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Abstract 

This thesis research explores integrating a reputation-based trust mechanism with an 

agent-based backup protection system to improve the performance of traditional backup 

relay methods that are currently in use in power transmission systems.  Integrating agent 

technology into relay protection schemes has been previously proposed to clear faults 

more rapidly and to add precision by enabling the use of adaptive protection methods.  A 

distributed, cooperative trust system such as that used in peer-to-peer file sharing 

networks has the potential to add an additional layer of defense in a protection system 

designed to operate with greater autonomy.  This trust component enables agents in the 

system to make assessments using additional, behavioral-based analysis of cooperating 

protection agents.  Simulation results illustrate the improved decision-making capability 

achieved by incorporating this cooperative trust method when experiencing abnormal or 

malicious communications.  The integration of this additional trust component provides 

an added push for implementing the proposed agent-based protection schemes to help 

mitigate the impact from wide-area disturbances and the cascading blackouts that often 

follow.  As the push for electric grid modernization continues, an agent-based trust 

system including this type of behavioral-based analysis will also benefit other smart 

components connecting critical grid control and monitoring information systems. 
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REPUTATION-BASED TRUST FOR A COOPERATIVE, AGENT-BASED 

BACKUP PROTECTION SCHEME FOR POWER NETWORKS 

 

I.  Introduction 

ESEARCH into the improvement of protective relays used for the protection of 

electrical power transmission and distribution systems has further increased 

following findings released after the investigations into the August 2003 blackout 

affecting the Northeastern United States and Canada.  The instability resulting from 

cascading outages was identified as a primary cause of the uncontrolled blackout 

spreading across a wide geographic area [59].  This research has been ongoing since the 

mid-1980’s when the North American Electric Reliability Corporation (NERC) 

sponsored a study indicating that protective relays were involved in 75 percent of major 

power system interruptions [48].  The importance of proper protection settings is 

amplified during times of system disturbance.   

1.1  Background 

Many problems involving relay failures are not exposed until external fault 

conditions occur or the system is operating at or near its limits.  As part of the Energy 

Independence and Security Act of 2007, grid modernization was directed to ensure that 

electricity could be reliably and securely provided to meet future growth requirements 

[1].  While grid interconnections have become a standard method of ensuring redundant 

paths between power sources and load destinations in a grid, these modernization efforts 

are looking at better integration of communications networks to provide increased control 
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opportunities.  As a result, the electric grid is becoming more unified which may intensify 

cascading problems that result when a relay causes a trip at an undesired time. 

Improved network capabilities have enabled grid modernization efforts.  Utility 

companies are able to gather more information, quicker than ever before.  Utilizing more 

readily available commercial off the shelf (COTS) products has changed the industry 

from revolving around proprietary technology to integrating more open communications 

standards [55].  Increased information has helped improve the situational awareness of 

supervisory control and data acquisition (SCADA) system operators and enabled industry 

to base business decisions around real-time data.  However, this integration has also 

opened the system to remotely executed computer-based network attacks. 

Power and other utility networks are increasingly the subject of attack [19], [20], 

[22], and [56].  Threats to the power grid and other elements of critical infrastructure are 

likely to occur at times of war preparation such as during the mobilization and 

deployment phases [44] to cause delays and backlogs at key logistics locations [16] and 

[31].  Other research [63] focused specifically on attack strategies designed to amplify the 

cascading effects of grid failures.  Improving the reliability and security of the grid 

protection elements and the underlying communications networks will have a direct 

impact on the ability of the US armed forces to continue to deploy and rapidly project 

force where needed anywhere around the globe. 

1.2  Overview and Goals 

Transmission line protection systems are particularly vulnerable to these types of 

cyber attacks.  The physical and network protection in place is insufficient given their 
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capability to control switch gear and the flow of electricity [55].  As modernization 

increases there has been a larger focus on improving the security of control networks.  

This thesis introduces a reputation-based trust mechanism to help supplement more 

traditional network protection mechanisms and will augment the layered security 

approaches as recommended in [14].  The research goal will also enable system operators 

to gather more insight into the behavior of essential control components using both 

operational and nonoperational data. 

Public standards such as IEC 61850 and the transition to internet technology have 

increased interoperability but also made the power networks more vulnerable to attack.  

A peer-to-peer (P2P) based trust scheme will enhance the effectiveness of the other 

network protection mechanisms such as intrusion detection systems and firewalls.  This 

thesis shows that cooperative information sharing produces improved decision-making 

capability through coordinated fault verification to reduce grid area isolation and enables 

more responsive breaker reactions to system faults when compared to traditional fault 

clearing mechanisms.  As this type of trust system is refined, it can be of extreme 

importance, adding reliability and security to a utility network, especially if integrated 

into a segregated Utility Intranet [14].   

1.3  Organization 

The following chapters discuss agent-based technology and its applications in 

transmission network protection as well as cooperative trust arrangements in peer-to-peer 

systems.  Chapter II covers established research in the areas of the power grid, traditional 

and proposed protection mechanisms, cooperative trust systems, and potential threats to 
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grid security.  Chapter III details the methodology used for assessing the ability of an 

agent-based cooperative trust protection mechanism.  This mechanism must recognize 

behavior that might cause incorrect or unreliable decision making and react appropriately, 

producing correct results more rapidly than traditional backup protection mechanisms.  

Chapter IV gives an analysis of why important features were included in the trust scheme 

and provides the experimental results from simulated scenarios.  Finally, Chapter V 

summarizes this thesis work and its contributions and suggests future research 

opportunities in this area. 
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II.  Literature Review 

he power grid is just one element of a nation’s critical infrastructure, however 

many of the other elements essential to support society depend upon a reliable 

flow of power to function.  A relatively new invention in the history of humanity, people 

have quickly come to rely on the electrical energy produced and transported by the power 

grid on a daily basis.  This lucrative and indispensable industry has recently become a 

more commonly suggested target for both physical and cyber attack due to society’s 

dependence on it.  Attacks on the system are likely to be the work of professionals, 

accomplished by organized crime and state-sponsored terrorist or military groups [18].   

Environmental problems also afflict this complex system and previous research 

efforts typically focused on improving system stability, security, and reliability with 

respect to these types of issues.  Power system companies are integrating more networked 

communications into their corporate and control systems because it provides them with 

additional information to make better business and system control decisions and has 

become economical to do so.  As the strain on existing grid systems continues to increase 

and more attention is given to network based attacks on the system, some research efforts 

have shifted to the cyber security needs of power systems typically revolving around 

identity credentials and policy-based trust as discussed in [5].   

Real-time information requirements have presented some difficulties in fully 

utilizing the security benefits that these trust systems offer, warranting further study into 

other layered protection mechanisms.  Additionally, modernization will increase network 

reliance, necessitating this investigation into using reputation-based trust to improve 
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system coordination.  This chapter on related literature is broken into four main parts.  

The first describes the electrical grid and gives some insight into why interest in its 

security is increasing.  The second part describes current grid protections mechanisms 

and research efforts to transition to a more decentralized networked protection 

environment.  The third section reviews the use of trust as a measure of communications 

reliability and how collaborative trust has been applied in existing peer-to-peer networks.  

The final section covers the increased need for cyber security in SCADA systems. 

2.1  Background on the Power Grid 

Electric power has been generated commercially since the late 1800’s and has 

constantly been under a state of expansion and interconnection.  The three primary 

reasons for this expansion as stated in [40] include benefits from economies of scale, 

improved load factor and increased generation reserves.  Together, these three factors 

have helped make electricity more affordable and reliable for a greater number of people.  

A basic understanding of electricity, the main components in a power grid and a history 

of system vulnerabilities is essential to understanding the current requirement for 

modernization. 

2.1.1  Electricity, the Fundamentals 

There are four basic descriptors used when discussing electricity in power 

systems [40].  The first term is voltage.  Voltage (V) refers to the difference in electric 

potential and can be expressed as one Joule of energy that is needed to move one 

Coulomb of electrical charge.  Differences in electric potential cause charge to flow 
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through a line.  The second descriptor current (I) describes the rate of this flow and is 

measured in amperes in which one ampere is one Coulomb per second.  These two terms 

are often referred to together when using Ohm’s Law given as 

V IR      (2.1) 

where V is the voltage, I is the current, and R is the resistance (the third term).  

Resistance is determined by the characteristics of the material through which the current 

flows and is measured in ohms.  Increasing resistance in series (longer transmission lines) 

increases the overall resistance where as increasing in parallel (increased aggregate load) 

decreases the overall resistance [40].  Thus there is a linear relationship between voltage 

and current that depends upon the resistance.  For a given voltage, if the resistance 

decreases the current should increase.  This is particularly evident in ground shorts where 

an excessive current typically engages protection mechanisms to isolate the fault and 

prevent circuit damage. 

The potential for transmission line damage can be explained by resistive heating 

as discussed in [40].  Heat is measured in energy per unit time as is referred to as power 

(P), our fourth term.  Power is most often generally referred to by the equation 

 P IV  (2.2) 

which describes power as current multiplied by voltage and results in a measure of watts 

or Joules per second.  Using Ohm’s Law, this equation 2.2 may also be rewritten as   

 
2P I R  (2.3) 

to more clearly show the relationship between current, resistance, and power.   
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This relationship is significant when discussing changes that occur in different 

parts of the systems.  As a rule, current and resistance cannot be adjusted independently 

[40].  This relationship can come into play in two distinct types of scenarios.  First, in 

some circumstances such as in home usage, voltage is held constant.  Decreasing circuit 

resistance causes current to increase and since the current term is squared, current has 

more of an impact on the power than the resistance.  In the second scenario more 

applicable to transmission and distribution line design, current is held constant with 

respect to the power lines and is dependent upon the aggregate end loads.  Since power 

losses from resistive heating are not desired, line resistance should ideally be minimized.  

The selection of a conductor for use as a line material is important since tradeoffs exist 

between performance and cost.  This selection must account for topography as well.  As 

the power supply is increased during times of peak demand, current across the line 

increases, resulting in additional line heating.  This resistive heating can result in line sag 

that is associated with a primary cause of short circuits and their resultant power outages. 

The four terms previously discussed do not encompass all power system 

descriptors require for system protection.  There are additional characteristics associated 

with alternating current (AC) that need explanation.  AC was selected for use in power 

systems due to the ease of using transformers to raise and lower voltages, optimizing 

energy conservation.  Higher voltages prevented transmission losses, but lower voltages 

were needed for safer end-use applications.  AC is traditionally depicted as a sine wave.  

The current reverses direction twice each cycle at a frequency that has been standardized 

at 60 cycles per second in the US. 
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The two most significant characteristics associated with AC systems are reactance 

(X) and impedance (Z).  Reactance is associated with the ability to oppose the current 

flow and is either classified as inductive if it resists changes in current or capacitive if it 

resists changes in voltage.  If there is any reactance, there will be a phase shift between 

the voltage and the current sine waves.  This reactance measure is combined with 

resistance to create a measure called impedance.  Impedance deals with the aggregated 

resistance or desire to flow and may be represented in complex number notation.  These 

two terms are used by protection mechanisms to determine fault conditions and location. 

2.1.2  Main Power Grid Components 

When analyzing the state of a power grid and its ability to balance power 

requirements, researchers typically divide the grid into segments based on function.  The 

electric power grid is comprised of four major components (as seen in Figure 1) that 

work in harmony to deliver a consistent supply of power exactly when and where it is 

needed.  The first part of the power grid is the generation capability.  The source of 

power used in generation can come from many different resources, typically  

 

Figure 1. Basic depiction of typical electric grid components as described in [59] 
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acknowledged as coal, oil, or nuclear but now includes more green options such as wind 

and solar energy.  Regardless of the actual physical source, generation is involved with 

transforming that resource into electrical power.  Once in this form, it is able to be 

transformed (typically to a higher voltage) and transported to other regions. 

Now that the electrical voltage has been generated, it flows to other locations in 

the grid on the transmission system.  The transmission system is characterized by high-

voltage transmission lines generally recognized by tall steel towers.  It is used for 

transporting electricity over long distances using higher voltages to reduce line heating 

and resistive power losses as discussed in the previous section.   

Transmission systems connect geographically separated regions that may not have 

their own generation capability or need additional generation capabilities.  The US power 

grid is broken into three regions (as seen in Figure 2), each with its own generating and  

 

Figure 2. Three interconnections of North American power grid as described in [58] 
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transmission capabilities.  There are limited DC connections between these regions, but 

they are typically thought of as isolated grids among themselves.  As explained by NERC 

in [45], together the generation and transmission components comprise the bulk power 

system.  Bulk power is suitable for general purpose electrical operations, but additional 

conditioning is more likely needed for sensitive operations.   

The transmission systems in each grid are then linked to distribution systems at 

power substations.  The voltage is gradually stepped down to lower voltages that are 

generally considered safer and are more suitable for final customer use before being 

distributed to end users.  These distribution systems generally cover a smaller 

geographical region and may have been isolated from other regions at one time.  

Distribution systems cover the final portion of the journey from generation source to load 

destination. 

The final component in the electrical grid is the load or power demand.  

Individual loads are important for customers and billing components of power supply 

companies, however for planning purposes these individual loads are aggregated in terms 

of quantity and timing.  Individual loads are very dynamic, changing in both predictable 

and unpredictable cycles.  Planners are able to use these historical cycles along with 

current environmental and social data to try to balance generation to meet the required 

loads across the system (both typical and unexpected).  As loads increase, there is an 

increased likelihood of system overload if generating stations do not keep up with the 

growing demand.  The electricity generated for the power grid must be used almost 

immediately after it is produced.  It cannot be stored or routed as easily as other utilities 
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such as water, sewage or gas.  Electricity must be carefully monitored and controlled 

ensuring that the power generated meets the required loads.    

2.1.3  Monitoring and Control Systems 

Information systems that provide monitoring and control functions are the lifeline 

of the power industry.  They allow for responses necessary to provide the reliability and 

stability required to create an uninterrupted flow of power.  The power industry has made 

progress on modernizing its monitoring and control systems to improve performance and 

awareness of system status.  This progress has usually been done for the utility 

companies’ self interest.  Companies are able to capitalize on the interconnections 

between regions, trading power production capabilities to balance the overall system in 

the most cost-effective manner.  They are able to get feedback from the components in 

the system enabling more rapid reactions to periods of increased demand. 

Monitoring and control functions are provided by SCADA system components 

inserted throughout the grid.  SCADA systems generally provide centralized control and 

monitoring for a wide geographic region.  Devices read system data, automatically react 

to adverse conditions using protection devices and then typically report back to a system 

operator monitoring the overall system.  This operator can also make inputs to the system 

by adjusting or overriding automatic controls based on more complete situational 

knowledge.  These computer systems aggregate data to help build a complete picture of 

the system and improve situational awareness for operations personnel. 

The influential ability created by advanced control systems and recent integration 

of open communications systems such as the internet has made SCADA systems an 
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attractive target for cyber attacks [47].  The US government has focused attention on 

securing the components of its critical infrastructure against cyber and physical attacks in 

a series of publications between 1998 and 2010 that included presidential directives such 

as [9], [10], and [13] as well as planning documents [1] and [12]. 

2.2  Protecting the Electrical Grid 

Improving the reliability of electrical flow has often focused on improving the 

performance and security of power grid protection components.  One branch of research 

has focused on the improving communications networks and cyber-security.  Connection 

points between the utility networks and the rest of the internet can be secured using 

traditional mechanisms such as firewalls, intrusion detection devices and cryptographic 

protocols [25].  This type of research has received a lot of attention as the government 

revealed evidence of foreign attempts at network mapping [19] and as cybercrime 

organizations threaten to breach network security from around the globe [62]. 

An alternate focus on grid protection has revolved around increasing system 

stability by improving fault clearing methods.  Fault clearing time is defined in [3] as the 

time necessary to identify a fault condition, make a decision about whether or not to take 

an action, and take the action to help isolate a section of the grid.  While there are many 

components that help provide this function, fault clearing is primarily dependent upon 

circuit breakers that physically open or close a circuit and the protective relays that help 

determine when a circuit breaker should operate and direct that operation [40].  This 

branch of research primarily looks at improving the interactions of physical devices such 

as circuit breakers and relays and the capability to provide human operators with 
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additional system knowledge or improved interfaces to make better decisions.  Research 

done in conjunction with this thesis has been accomplished with respect to this second 

focus on protection. 

2.2.1  Circuit Breakers 

 Circuit breakers open and close a circuit based on input from another device and 

rely on a form of energy to open and/or close.  When the breaker is closed, current is able 

to flow through the circuit.  When the breaker is opened, the flow of current is interrupted 

until the breaker is reclosed.  Breakers can be designed for different functions taking 

advantage of various mediums and their associated characteristics to terminate the 

electric flow.  The commands to open or close the breaker can be directed by a system 

operator in response to stability needs or may be generated by an automated monitoring 

device known as a protective relay in response to a fault condition.   

2.2.2  Transmission-Line Relay Protection 

A relay is the device that detects abnormal power conditions and signals a circuit 

breaker to interrupt the current [24].  There are a variety of relay types used in the power 

grid, each with a purpose specific to the protection needed.  Transmission lines are 

typically provided redundant protection and protection is needed from phase faults (faults 

between transmission lines) and ground faults (faults between a transmission line and a 

point of zero potential such as the ground or a tree) [40].  The distance relay and the 

differential relay as described in [24] and [53] provide the bulk of the protection from 

these types of faults for the transmission system. 
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Distance protection relays use impedance measurements (as discussed in Section 

2.1.1) to determine if a fault is located within their protection zone.  The impedance of a 

transmission line is generally well known [24] and tested to verify reliable and expected 

performance.  Impedance is dependent upon the line material and construction.  

Impedance should stay consistent along the length of the line as long as the line type is 

the same allowing the location of the fault to be determined with a relatively high degree 

of accuracy.  If the impedance measurement falls into the fault zone that was established 

by system designers based on grid components and architecture, the relay will trigger the 

appropriate circuit breakers to open.  The research in this thesis focuses on this common 

type of transmission line protection. 

A second type of protection mechanism is often integrated into a protection 

scheme to detect other types of faults.  Differential protection is increasingly being used 

with relay communications methods such as pilot wire relaying to measure the difference 

in current at both ends of a transmission line.  Relays at each end of the line send and 

receive measurements from the opposite end of the line they are protecting.  Since the 

difference between measurements should be zero, the appropriate circuit breakers are 

tripped if the magnitude of difference is above a set value. 

2.2.3  Fault Clearing Using Circuit Breakers and Protective Relays 

Power circuit breakers and protective relays work in conjunction to provide 

autonomous monitoring and control functions necessary to clear fault conditions in power 

systems by interrupting the flow of power to a portion of the circuit [40].  Efforts to 

improve the operation of these devices have been ongoing since the 1950’s when 
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Kimbark described conditions required to rapidly clear faults from the power system 

[30].  More rapid fault clearing has a stabilizing effect by reducing the loss of 

synchronization and limiting the associated transient fluctuations. 

While faster fault clearing is essential, it is only one component of improving the 

system reliability.  Proper analysis of fault location and system conditions are just as 

vital.  This analysis enables the protective devices to clear the fault in a way that 

minimizes the effects caused when isolating a portion of the grid.  Relays must be 

sensitive and intelligent enough to select only the circuit breakers that need to open to 

clear the fault.  If too many circuit breakers are open (or if the area they cover 

encompasses too large a region) more loads will be disconnected from the generation 

devices.  It is typically better to take additional time to perform more complete analysis 

and open only the appropriate breakers than it is to open selected breakers as rapidly as 

possible. 

In order to gather the appropriate information necessary for this analysis, different 

types of protective relays have been installed in the electrical grid.  These different types 

help increase the selectivity of a relay.  Relay implementations as discussed in [36] have 

been integrated into different regions of the power grid accounting for what they are 

protecting and the type of protection that is required.  Generators require different 

safeguard mechanisms and settings than transmission lines do.  Backup systems require 

different settings than primary systems.  As the grid has been interconnected, improper 

settings have had a bigger impact and amplified the results of improper protection 

settings [59].   
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2.2.4  Interest in Relay Improvement from 2003 US Blackout 

The impact that improper relay settings can have on a system were brought to 

light from the findings following the August 2003 blackout affecting regions of the 

northeastern United States and portions of Canada [59].  Mismanaged relay settings were 

directly related to the cascading effects that caused the blackout to cover such a wide 

region.  The relays did not fail but operated as designed and intended according to their 

improper implementations.  Had system operators been able to mitigate one of the 

primary causes of the disturbance through better situational awareness, it is likely the 

cascade would not have occurred.  Better relay coordination may be able to prevent 

cascading effects in the future. 

After several lines isolated regions of the grid due to ground faults from contact 

with overgrown trees, the relay responsible for the cascade reacted to an overload 

situation as opposed to an actual ground fault [59].  The generation losses from the 

isolation coupled with the operator’s failure to reduce the overall load caused the relay’s 

power information readings to fall in the impedance zone.  The relay read the conditions 

as if it was experiencing a three-phase fault instead of an overload and its backup 

protection tripped the appropriate circuit breaker as it was designed to according to its 

settings. 

The findings released in that study recommended reviewing relay settings.  Many 

relays had been improperly configured or manufacturer preset configurations had not 

been adjusted for the current implementation and topography.  In particular, the 

committee acknowledged backup relays should normally be configured to check for 
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phase problems or fault conditions as opposed to overloads.  Overloads can often be 

short-term problems that occur as a system adjusts to fluctuations.  By triggering an 

improper circuit breaker trip in a situation such as this, these relays may spread the 

outage that they were attempting to contain. 

Additional interest in relay improvement was generated by two cascading 

blackouts that occurred in the European Union [60] and [61].  The 2003 blackout in Italy 

and the 2006 blackout originating in Germany both resulted in part from N-1 criteria not 

being met and from a lack of coordination with neighboring regions after multiple line 

trips caused power imbalances between the now isolated regions [60] and [61].  The N-1 

security rule as defined in [60] refers to the ability of a system to continue operations 

even if a single incident such as loss of a generation facility or transmission line occurs.  

It is aimed at preventing cascading effects.  Ultimately in both situations, those 

conditions were not met.  Findings indicated that better unified protection was needed for 

these increasingly interdependent systems and that relays operated incorrectly 15% of the 

time in the Italian blackout [60].  Increased relay research can help improve the 

coordination of protection efforts and improve system stability. 

2.2.5  Existing Relay Implementations in Backup Protection  

Currently, backup protection systems have been integrated into relay protection 

schemes to provide redundancy should the primary protection fail to operate.  Primary 

(zone 1) protection typically protects the first 85% of the line connected to a relay while 

backup (zone 3) systems cover a larger area [53].  Zone 2 protection can also be used to 

cover an area that encompasses the entire first line and a portion of the adjacent line [24].   
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Zone 3 systems provide multi-line protection, including the line that a relay is directly 

connected to as well as lines protected by adjacent neighbors [53].  As described in [59], 

some operators have stopped using zone 3 relays on high-voltage lines and reset zone 2 

relays to serve the purpose of a zone 3 relay.  For this research, zone 1 and zone 3 

protection regions were included as part of the protection scheme while the zone 2 region 

was not based on the coverage area.  These protection zones can be seen in Figure 3.  

Figure 3. Transmission Line Relay Protection Zones.  Primary protection is provided by 

zone 1 coverage which protects approximately 85% of primary line while 

zone 3 coverage covers the primary line, and extends past 100% of adjacent 

line to provide backup protection for that line.  For example Relay 3 provides 

zone 1 coverage for line B and zone 3 coverage for line C.  Relay 4 would 

also provide zone 1 coverage for line B but zone 3 coverage for line A instead 

since it is directional.  Relay 1 and relay 6 would provide zone 3 coverage for 

line B.  A zone 2 protection scheme (not shown) would extend past the zone 1 

coverage, but would be less than zone 3 coverage area.  [53] 
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When a fault occurs, the fault location and actions taken by other relays will determine if 

a relay needs to take action.  Using direct communications between relays to coordinate 

circuit breaker opening at both ends of a transmission line as in pilot schemes [7], 

designers are able to create a more effective protection scheme. 

This electrical fault protection has increased in importance as current systems are 

stressed to their limits [58].  Transmission line protection mechanisms are of crucial 

importance to the protection of the entire grid.  Designers must give proper consideration 

to relay settings when creating primary and backup protection schemes.  Both the line 

length and its relative importance in connecting geographically dispersed generating 

locations with destination loads determine the characteristics required for planning proper 

operation of the protection systems.  Benefits of using schemes with increased relay 

coordination such as pilot schemes must be weighed against the decreasing costs of these 

more resource intensive systems. 

2.2.6  Proposed Agent-based Backup Protection for Transmission Lines 

As costs for more advanced communications networks continues to decline, 

researchers have proposed replacing traditional protective relays with relay Intelligent 

Electronic Devices (IED) [64] that provide increased protective capabilities.  In this 

research, an agent was defined to be a software component able to interact and act 

autonomously based on the results of its interactions.  The IED’s that were created would 

be able to read power system information and react to that information.  They would also 

share information with neighboring nodes to include passing along any protective actions 

that they have taken.   
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This agent-based approach would fit into the current monitoring and control 

scheme and could pass information to a master control center as well.  It would allow 

agents to use remotely acquired information to make more correct decisions locally.  

Preliminary research as shown in [64] has demonstrated that this agent-based protection 

scheme has the ability to clear electrical ground fault conditions more rapidly, while still 

allowing the system to analyze the complete set of information required when making 

protection decisions.  The agents work together cooperatively as described in [14] to 

provide protection according to a preauthorized set of rules. 

2.2.7  Current Wide Area Agent Implementations in the Power System 

The additional computing power provided by integrating intelligent agents in a 

system such as this is of additional benefit in a SCADA scheme when compared to 

traditional relay implementations.  Agent-based relay research has also been initiated for 

adaptive relay schemes.  These schemes provide protection that changes with the external 

environment based on feedback from other parts of the system. 

New power systems in China have already been incorporating agents to provide 

features such as this as described in [11] and [70].  These agent implementations enable 

communications between relays and central servers.  The agents assist in fault protection 

using additional data gathered through collaboration.  This increased information 

requirement entails more inter-device communications, necessitating additional methods 

to secure the information exchanges.  This security is likely to come through network 

protection mechanisms such as cryptography and firewalls as well as other tools 

described in [6]. 
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2.3  Increased Need For Cyber Security and Better Information Sharing 

2.3.1  SCADA Modernization Efforts and Security Impacts 

Since the mid 1990’s, the evolution and modernization of electrical grid control 

mechanisms have attracted attention in the cyber security community.  Computer-based 

control systems were introduced to provide more advanced computational power and 

better data processing.  Digital technologies resulted in improved information handling 

and provided operators with automated, coordinated options to aid their decision-making 

abilities.  Systems typically revolved around a centralized computer located in a control 

center that would communicate with remote system components over a wide area 

network.  The resulting systems are much more capable and interoperable, but have also 

made the systems more vulnerable to exploitation from malware, hackers, and cyber 

attack [55].   

Modernization is necessary for improved grid stability and information sharing.  

The increased situational awareness enables operators to create flexible response options 

to prevent outages and minimize disruptions.  The additional protection requirements 

when integrating interoperable components are likely to increase security and reliability 

of the system as a whole.  The previous practice of security by obscurity goes against 

Kerchkhoff’s principle that states that the system design should not require secrecy to 

function securely [29].  Believing proprietary technology is a security measure works 

only until the specifications are discovered.  Once discovered, the system becomes more 

vulnerable and can be exploited more easily, often without notice. 
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2.3.2  Communication Needs for Grid Modernization 

Security needs continue to increase as the interdependence of the electric grid and 

communications systems grows more complex.  New information transactions are 

occurring to provide operators, customers and providers with the information they require 

to make effective, timely decisions.  The current infrastructure is mostly based off 

internet protocol (IP) technology to provide the required real-time information transfers.  

IP-based technologies such as transmission control protocol (TCP) and user datagram 

protocol (UDP) are used to for information exchanges and have enabled the use of 

extensible markup language (XML) tagging to help with data format issues [54].   

As discussed in [57], IP provides basic address identification information to help 

route information transfers from one point in a network to another.  It helps identify 

components and lets them talk to each other.  TCP is a connection-oriented protocol 

designed for reliable communication between two nodes in a network.  It guarantees that 

all the data will be received in the correct order.  UDP on the other hand is connectionless 

and does not provide for error correction or guaranteed delivery.  It does however provide 

for more rapid data delivery as a connection does not need to be established.  It also has a 

lower overhead since less information needs to be transferred in each given message.  

These conditions make UDP the fastest and least complicated way to transmit data 

resulting in its use for most real-time applications.  XML standardizes the data format 

and creates tags that help applications identify and exchange information in an 

interoperable manner [54].  It has helped synchronize database information and enabled 

data sharing for new and innovative purposes. 
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2.3.3  The Smart Grid Transition and New Threats 

These improvements in network and tagging abilities have helped shape the path 

towards incorporating technology to improve grid reliability and optimize energy 

generation and distribution.  The most significant challenge in moving towards this goal 

is protecting the information that will be required to improve grid awareness and make 

optimizing decisions.  Interconnections will be incorporated in new devices that make 

power control decisions based on preference information that may be pulled from 

financial databases.  Security measures will need to be implemented cooperatively to 

protect the system as a whole from cyber and physical threats. 

Attacks against electric utilities are becoming more attractive due to the effects 

that can be created.  Customer databases are large and contain financial and personal 

information.  These systems receive more cyber security attention than control equipment 

because they are more closely related to corporate networks.  However, as researchers 

look towards the transition, the security focus is becoming more encompassing.  In [55], 

Shaw writes that directly controlling switch equipment and transformers is the biggest 

threat to grid stability.  Protective relays are positioned at locations where they have the 

potential to interrupt failures from spreading and cascading.  More advanced relays have 

more complex communications needs and thus require a different level of protection than 

they originally did.   

If access to relays is granted, hackers would be able to directly control breaker 

actions and protection settings.  As the age of the Smart Grid approaches where 

information is widely shared, it is likely that relays at remote locations will link to the 
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control and corporate networks to allow remote status checking and setting adjustment.  

Additional layers of security such as trust measurements from behavior observation can 

be used for distributed, autonomous protective actions that should help mitigate some of 

the effects if an intrusion were to occur and traditional protective schemes fail. 

2.4  Reputation-Based Trust and Agents in Distributed Systems 

 Researchers have acknowledged a need to secure networked SCADA 

communications in [14].  The inclusion of agents in these control systems using an 

autonomous information exchange implementation creates a P2P network among the 

intelligent agents.  Agents can learn who to interact with either at initialization or through 

topology discovery methods during routine operations.  Agents can interact through 

communication to determine the reliability of other agents.   

2.4.1  Using Trust to Measure Reliability of Distributed Communications 

The reliability of other agents could be tracked using a trust system.  Trust as a 

concept has been formalized by Dr. Stephen Marsh in [35] where he described it as a 

degree of confidence in information obtained from a known or unknown source when the 

outcome of a decision using that information is uncertain.  Trust is also a central concern 

in many multi-agent distributed systems where agents base decisions on information 

obtained from other agents.  This information can be obtained directly, indirectly, or with 

some combination of methods as discussed in [51]. 

When implementing a trust system, to aid in decision making agents need to put a 

value on information obtained from others using a trust metric, where a trust metric is 
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defined as system measurements used to quantify the reliability of other agents.  This 

value can come in the form of user satisfaction scores common in e-commerce situations 

and in P2P systems.  Typically, P2P systems are thought of as file-sharing systems such 

as Gnutella, Kazaa, and BitTorrent or communications systems such as Skype.  A typical 

problem in these P2P networks is that there is a lack of accountability due to the 

anonymous nature of the network and the potential for misuse is increased based on that 

anonymity.  Ensuring appropriate peer behavior using trust management systems has 

been discussed in papers such as [5], [33], [42], [51], and [65].   

Trust as described in these systems generally is based off of policy, reputation or 

a combination of these descriptors.  Trust can be established at the individual or system 

level.  It can be subjective and is subject to change, making an extensive record of 

historical actions not necessarily representative of future performance.  The time period 

that must be tracked is dependent upon the system, the type of protection, and tolerance 

that is acceptable.  Policy-based trust is implemented in networks using credentials such 

as passwords or keys and often provides access control functions as described in [5].   

Combining policy-based trust with reputation-based trust is becoming more common as 

suggested in [33] and [39].   

2.4.2  Reputation-Based Collaborative Trust Systems 

In reputation-based trust systems, there are a variety of methods for computing 

and storing trust.  Trust is usually based off of a trust value that is dependent upon a 

history of interactions that are rated on a scale of success.  Trust can either be calculated 

by directly tracking interactions or expanded to create a more system-wide view by 
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accepting the values created by another node.  While typically used in implementations 

for online file-sharing or e-business rating systems, these reputation-based schemes can 

play a part in helping improve the overall security when implementing agent-based 

protective measures in the power grid.  The intelligent agent computing power could be 

harnessed for distributed trust calculations.  

Decentralized trust computations take the burden off a centralized server and take 

advantage of resources that exist in the system.  Agents have immediate access to 

knowledge and can share information when required, minimizing the distance that data 

requests have to travel over the network.  Theses local trust values can be aggregated 

where necessary to improve a single agent’s overall view of the network.   

One such system, described in [28] is called EigenTrust.  This system focuses on 

using both direct and indirect experiences to calculate a trust value using a concept 

known as transitive trust.  Peers rate other peers with whom they have had a direct 

interaction.  To expand their view, these trust values are exchanged with other peers in 

order to aggregate ratings and reevaluate peers or provide a peer with a trust value 

indirectly.  It continues spreading information this way to spread trust values globally 

throughout the system. 

A second collaborative reputation-based trust system, Project NICE, was 

developed at the University of Maryland for decentralized applications using shared 

resources.   Lee, Sherwood and Bhattacharjee worked on establishing a distributed 

scheme for trust inference in P2P networks at UMD that efficiently stored user reputation 

information in a distributed manner [32].  Their work focused on a decentralized trust 
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inference scheme that could be used to infer trust across an arbitrary number of levels 

while requiring a limited amount of storage at each node.  Agents created local trust 

values using the algorithm they deemed appropriate. 

2.4.3 Explanation of the Trust System Used in this Research 

The trust system implementation used in this research was inspired by the work 

done for Project NICE.  As described by Lee in [32], the NICE platform was used for 

cooperative distributed applications.  In the original implementation, applications using 

this protocol bartered resource certificates to gain access to remote services. 

The idea behind this certificate exchange was that agents could redeem issued 

certificates at a later time to receive resources or storage as a payment scheme.  The 

NICE protocol used network communications to share information and exchange 

certificates required for trust decisions.  There are three main steps in a typical 

implementation.  First, an agent advertises the resources it has to offer and its location.  

Second, an agent needing resources arranges bartering and trading of resource 

certificates.  Finally, a distributed trust valuation is accomplished based on the results of 

the transaction, creating a value for the interacting nodes.   

Depending on the computing resources available and implementation desired, 

trust values can be stored either locally or remotely (or a combination of methods can be 

used).  As discussed in [32] each method has its own advantages and disadvantages.  

Remote storage of trust values typically requires a public key system to digitally sign 

trust and identity information using a hash algorithm creating a trust cookie in the 

process.  In contrast, local storage methods reduce the communications requirements and 
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can reduce some of the time needed for the verification associated with the sending and 

retrieval of trust values.   

These methods of distributed reputation-based trust management can be 

successfully applied in an agent-based power system protection scheme.  When 

integrated with other forms of traditional network protection, they are an essential 

component helping add security and reliability to the data exchanges.  This additional 

layer of trust verification can help operators identify behavior-based anomalies rapidly 

for time-sensitive critical infrastructure protection. 
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III.  Methodology 

HIS chapter presents an original methodology for integrating reputation-based 

cooperative trust as an additional layer of security for backup protection systems.  

The new agent scheme integrates behavioral-based analysis with an agent-based 

protection scheme.  Independent, distributed intelligent agents can use the reputation 

information from this analysis to improve decision-making and responses.  The data 

obtained while observing the behavior of cooperating agents can also be used to make a 

judgment regarding the reliability of any information obtained from the observed agent. 

There are three main goals for this chapter.  First, this chapter will describe the 

approach taken to integrate the peer-to-peer cooperative trust scheme that was adapted for 

use in this agent-based protection environment.  Second, it explains the simulation setup 

and the methodology that was selected to obtain significant and meaningful results by 

describing the integrated model and tools upon which this research was based.  Third, it 

reviews the original malicious simulation scenarios that a particular implementation of 

the cooperative trust scheme could encounter and explains the experimental parameters 

used in this agent-based backup protection system.   

 3.1  Research Objectives 

As described in Chapter II, it is essential that protection systems implement relay 

settings appropriate for the situation and operating conditions.  Research has shown that 

intelligent agents embedded into protective components such as relays have the ability to 

add system stability [64].  This stability is gained as agents acquire remote information ad 

assemble it into a more complete situational picture to make an increased number of 

T 
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correct decisions more rapidly than traditional methods allow, especially when exposed 

to a more open communications network.   

The transition to a more interconnected Smart Grid requires additional 

information sharing to help improve system operator situational awareness.  Agents have 

the ability to analyze information and behavior improving this awareness.  The 

information can be exchanged between central systems and protection agents to enable 

operators to remotely review system status and settings and make complementary 

adjustments that support those made automatically by the agents.  This improved system 

awareness will prevent situational lapses that often result in cascading outages. 

Grid transformation requires a renewed focus on cyber security due to the 

increased reliance on the communications infrastructure.  Modernization necessitates 

evaluating component vulnerabilities.  Solutions to protect against exploitation need to 

increase security while maintaining interoperability and real-time data exchange.  

Traditional network security measures need to be modified to meet time restrictions and 

typically introduce unacceptable delays into the system.  The proposed agent-based 

protection scheme integrates a reputation-based trust system that provides behavioral-

based analysis with limited overhead. 

A reputation-based trust system was integrated with an intelligent agent designed 

to be compatible with work accomplished in [64] enabling the new agent to perform 

additional analysis of other agent behavior.  The new agent’s success was determined by 

performance comparison with the original agent scheme and with traditional protection 

mechanisms during times of malicious communications to validate the hypothesis that the 
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reputation-based trust component could clear faults no slower than traditional protection 

mechanisms and produce a higher percentage of correct behaviors than the agent-based 

scheme originally proposed in [64]. 

Performance of the new trust agent was measured through simulation by 

comparing the time needed to clear an electrical fault condition using the backup 

protection provided by the new agent incorporating the trust scheme with the time 

associated with traditional zone 3 distance relay settings that are traditionally on the order 

of one second [24].  To account for the effects of malicious behavior, the correctness of 

the agent actions were also annotated and compared with the actions taken by the original 

agent created in [64].  The definition for correct behavior was adapted from performance 

classifications given in [7].  A correct decision was defined by an agent disregarding 

fraudulent messages and not extending the isolated portion of the grid beyond what was 

required to clear the fault. 

3.2  Collaborative, Reputation-Based Trust Approach 

3.2.1  Trust Implementation for Protection Agent 

For this project, a simplified implementation of the NICE algorithm was 

implemented based around stand-alone simulator code provided by Lee [32] for an 

extended paper at http://www.cs.umd.edu/projects/nice/.  The modified implementation 

maintained most of the capabilities that were proposed by the original research, but 

minimized the traffic that needed to be exchanged between nodes by using local trust 

storage.  Due to the unique and predictable message traffic that would be sent throughout 

http://www.cs.umd.edu/projects/nice/
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the agent protection system, many of the values could be standardized by message type.  

Other features were adjusted to fit this unique application.   

The authors recommended that remote storage be used to add some protection 

from denial-of-service attacks.  This forces the requesting node to prove their trust to the 

serving node and prevents malicious nodes from forcing agents to search other peers for a 

non-existent trust value.  Limiting the agents with whom communications are allowed to 

a specific subgroup reduced the need for this type of protection in this agent 

implementation. 

Initial experimentation using this trust algorithm was designed to take advantage 

of local trust computation and storage.  Trust valuations were not shared throughout the 

system to create global trust values and the scheme was designed to operate without 

cookie exchanges to reduce message size and network traffic.  In fact, no additional 

communications were exchanged between agents.  This format replicated Wang’s 

original experimental results from [64] while validating the trust computation methods.  

Nodes would not share trust information in this setup, nor could they replace untrusted 

nodes with trusted ones. 

3.2.2  Agent Communications Topology 

Agent nodes were arranged in a structure created for joint system protection and 

were statically arranged to communicate with a preselected set of neighbors.  This 

arrangement ensured communications with agents who would traditionally provide safety 

should protection efforts fall back on non-agent methods if communications were 

interrupted or terminated.  In this implementation, agents would not be able to form 



 

34 

cliques only with other highly trusted agents as it could leave gaps in protective coverage.  

Agents have to be more selective in choosing trusted agents from their limited agent pool, 

basing decisions around the established topology as well as the trust metrics. 

Preset communications were established for a given agent with three distinct 

groups.  The first group consisted of any other agent sharing primary protection of the 

line.  The second group was more extensive.  This group included agents who augmented 

the primary protection by providing backup protection for that same line segment.  The 

third group consisted of any intermediary agents located between the original agent and 

agents providing backup protection who were not responsible for protecting that given 

line segment.  

Agent communications were then broken into two components.  The first 

component was agent communications with the local power system interface which will 

be described in more detail in Section 3.2.3.  The second component was agent-agent 

communications described in Section 3.2.4.  These two components were used in 

conjunction to first obtain local power system conditions and then send that information 

to an agent belonging to one of the specified groups. 

3.2.3  Communications Between Agents and Power System 

Agent interactions with the power system included three types of messages.  The 

first two types were a query and response for local state information.  In response to a 

query, the agent obtained voltage and current measurements for each of the three phases 

of electric power as well as fault indications for the primary and backup protection zone 

and any primary or backup signals sent to the breaker directing a trip.  The third 
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classification was a message to the breaker directing a breaker trip or directing the 

breaker to block the previously observed trip signal.  The information obtained from the 

power system was temporarily stored to be exchanged with other agents. 

3.2.4  Agent-Agent Communications 

Communications messages between agents were classified as one of three types 

as well.  The first two types were considered routine.  First, each time period agents 

queried other agents for conditions at the remote location with information query 

messages.  Second, agents would respond to a query by sending the local data that was 

obtained from their power system query using an information response message.  The last 

type of message exchanged between agents was the set equipment message.  It was 

intended to be used when an agent was unable to clear a fault itself.  This message was 

defined as an advisory message to another agent that local protection mechanisms failed 

and coordinated help was necessary to clear the fault condition from a remote location. 

The information query and response messages were sent to each agent with whom 

communications were preselected.  This included the other primary agents, backup 

agents, and any intermediary agents.  The set equipment messages were originally limited 

to the neighboring agent in either direction, but could be expanded to include the next 

logical agent in line depending upon the conditions and trust implementation that was 

selected.  Reputation information was not exchanged between agents in this 

implementation.  Trust metrics were based on direct observations.  An inherited trust 

scheme that relied on referral information from others as described by [5] could 

potentially be integrated, but is not necessary and generates additional problems. 
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3.2.5  Cycle of Repeated Agent/Power System Interactions 

Wang’s original experiments were replicated after incorporating the NICE-

inspired trust computation and storage system.  In the simulations in [64], agents 

primarily communicated only with their immediate neighbors responsible for the shared 

protection of a line segment.  This was expanded for use in the improved trust system as 

described in the previous section to better enable fault and system state verification. 

Agent communications occurred in a cycle where the local power system 

conditions were first obtained.  The agent then checked response messages that were 

received to determine if other agents detected any fault conditions.  Agents used this 

information to verify if agent behavior matched known malicious activity and identified 

bad agents.  Next, each agent responded to any messages querying for remote system or 

verified and reacted to set equipment messages.  Finally, it queried all agents in the 

applicable protection regions for current state information and waited for responses.   

3.2.6  Trust Metric Computations 

In this new research designed to expand upon the work in [64], trust between 

agents was based on the interactions from status queries and the applicable response 

messages to focus on agent availability as opposed to message integrity.  Observed 

behavior was also compared against predefined conditions that were used to identify 

malicious agents.  Behaviors such as improperly sending set equipment messages or 

failing to trip a breaker when conditions warranted a trip were used to define malicious 

agents.  Other implementations could be created that would not only depend on the 

frequency of communications, but also on comparisons of remote readings with local 
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measurements to include a measure of quality or correctness into the rating.  For 

simplicity, this implementation only validated remote readings when sending or receiving 

set equipment messages.   

The simple example in Figure 4 demonstrates how trust metrics are developed and 

maintained for a pair of communicating neighboring nodes.  The number of query (Q) 

messages sent and responses (R) received are tracked for each agent with whom 

communications has been directed, in this case agents 4 and 5.  A successful interaction, 

defined as a response to a query message, is stored as a 1.  An unsuccessful interaction is 

stored as a 0.  A trust rating is then calculated for each individual agent by dividing the 

number of responses received by the number of queries sent as 

# ( 100 )

# ( 100 )

responses received in last time steps
Trust rating

queries sent in last time steps
  (3.1) 

These computations result in a trust rating for each paired agent between 0 and 1.  A 

positive rating represents an agent that is trusted to some degree.  A higher ratio of 

successful interactions equated to a higher trust rating for that neighbor.  An agent that is 

not trusted will be classified as bad using additional analysis, in which case it will receive 

a discontinuous rating of -1.  Behavior resulting in a classification of bad can be seen in 

Table 1.  This table is used to check for malicious behavior and can be tailored for a 

specific implementation to create the desired effects by adjusting the restrictions. 

Table 1. Observed Behavioral Conditions Used to Classify an Agent as Bad 

Condition # Behavior 

1 
Agent sends false set equipment messages  

(in excess of the established threshold of 3 in the last 0.05 seconds) 

2 Agent trip action fails during valid fault conditions 
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Agent 4 Agent 5 

Time:  0.014 

R 1 1 0 1 

Q 1 1 1 1 

Trust of 4:  0.75 

Time:  0.014 

R 0 1 0 0 

Q 1 1 1 1 

Trust of 5:  0.25 

Reply sent;  Query sent 

Reply sent;  Query sent 

Time:  0.012 

R 1 0 1 1 

Q 1 1 1 1 

Trust of 4:  0.75 

Time:  0.012 

R 0 0 1 0 

Q 1 1 1 1 

Trust of 5:  0.25 

Reply sent;  Query sent 

Query sent 

Time:  0.010 

R 0 1 1 1 

Q 1 1 1 1 

Trust of 4:  0.75 

Time:  0.010 

R 0 1 1 0 

Q 1 1 1 1 

Trust of 5:  0.5 

Reply sent;  Query sent 

Query sent 

Time:  0.008 

R 1 1 1 0 

Q 1 1 1 1 

Trust of 4:  0.75 

Time:  0.008 

R 1 1 1 0 

Q 1 1 1 1 

Trust of 5:  0.75 

Reply sent;  Query sent 

Reply sent;  Query sent 

Time:  0.006 

R 1 1 0 0 

Q 1 1 1 0 

Trust of 4:  0.667 

Time:  0.006 

R 1 1 0 0 

Q 1 1 1 0 

Trust of 5:  0.667 

Reply sent;  Query sent 

Reply sent;  Query sent 

Time:  0.004 

R 1 0 0 0 

Q 1 1 0 0 

Trust of 4:  0.5 

Time:  0.004 

R 1 0 0 0 

Q 1 1 0 0 

Trust of 5:  0.5 

Reply sent;  Query sent 

Reply sent;  Query sent 

Time:  0.002 

R 0 0 0 0 

Q 1 0 0 0 

Trust of 4:  0 

Time:  0.002 

R 0 0 0 0 

Q 1 0 0 0 

Trust of 5:  0 

Query sent 

Query sent 

Time:  0.000 

R 0 0 0 0 

Q 0 0 0 0 

Trust of 4:  0 

Time:  0.000 

R 0 0 0 0 

Q 0 0 0 0 

Trust of 5:  0 

Figure 4. Example of trust computations:  Shows seven information exchanges.  

Demonstrates how completed information exchanges are tracked to arrive 

at a current value of trust for a neighboring node. 
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The data an agent uses to compute trust values must be timely.  In the simulations, 

request and response messages were sent approximately every 2 milliseconds.  Older data 

in the trust computation is replaced with more recent data using a sliding window 

scheme.  As shown in Figure 4, agents start with a trust value of 0 and slowly build trust 

by responding to data query messages as shown from the time period from 0.000 to 

0.008.  In the provided example, Agent 5 stops sending response messages from time 

0.010 to 0.012 causing its trust valuation to be lowered.  This lack of reliable 

communication indicates that it may not perform as expected during critical situations. 

Ideally, agents want to respond to every query message, achieving the maximum 

trust rating of 1.  Realistically, a trust rating of close to 1 is all that can typically be 

achieved due to the time delay required for message propagation.  Unless an agent stops 

communication (which is not likely during normal operation) it will repeatedly send 

information queries (one each time period) as opposed to a scheme where an agent must 

wait for a response before sending its next query.  In this manner, an agent will always 

have an outstanding query that has not yet been answered, resulting in an optimal trust 

rating lower than the theoretical maximum.   

3.2.7  Reducing Trust and Using the Trust Metrics 

Trust valuations are lowered if agents stop responding to information requests.  

Agents may stop responding to requests due to issues such as communication failure or 

interference, internal faults of either the sending or receiving agent, programmed 

behavior (malicious or benign) or a variety of other issues.  Trust values may also be 

lowered if communications meet specified preprogrammed conditions such as sending 
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conflicting information, advertising faults when none actually exist or failing to take 

proper corrective actions.  The trust values are then used when an agent sends or receives 

a message to or from another agent directing different equipment settings to assess that 

information source or destination.  An agent with a trust value above the threshold can be 

assumed to be acting in the best interest of the protection system, whereas an agent with a 

rating below the cutoff can be assumed to have an issue with providing reliable 

information updates and thus protection.  The information received from an agent below 

the threshold should be considered more carefully before it is acted upon.  

The scheme must also be able to classify an agent with whom it has previously 

interacted as a bad agent.  In this implementation, an agent classified as bad will receive a 

trust rating of -1 to indicate that it is not trusted and distinguish it from an agent with 

whom communications have not been established or were terminated using the behaviors 

depicted in Table 1.  This rating is based on behavior and verification of message content 

and overrides the independent calculations associated with responding to queries.  While 

this classification can be made for many reasons, an agent must consider the decision 

carefully before making this assignment.  In some cases, the scheme may not be able to 

distinguish whether the agent is malicious or faulty, however there would still be benefit 

in reverting to an alternate protection scheme.   

This implementation does not implement a procedure to recover from a bad 

classification.  This is primarily due to the fact that maintenance would be required to 

either fix the protection components or the software at the remote location.  An out of 

band process is recommended to reset the system after corrective actions are completed. 



 

41 

3.2.8  Decision Matrix Guiding Agent Behavior 

To gain insight as to how the trust system would help the agents make decisions 

under different scenarios, a mechanism for detecting and responding to observed 

abnormal behavior was developed.  The rule set that was proposed in [64] was modified 

to account for the addition of trust information and behavior analysis.  The modified rules 

are presented as Table 2.  This is similar to the rule set that helps guide alerts in an 

Intrusion Detection System.  The agents needed guidance to react in a manner so as to 

increase the overall protection of the system under a majority of the test scenarios 

depicting both normal and abnormal system conditions. 

The matrix detailed a set of rules that can be described using conditional statements.  If a 

certain condition was met, one action was taken; if not met, a different action was taken.  

The rules now incorporate results from trust computation as additional conditions that 

must be satisfied to help decide which actions should be taken.  Additionally, the rules 

were modified to let an agent adjust trust levels and classify and agent as bad if the 

observed behavior matched conditions specified in Table 1. 

3.3  Collaborative Agent-based Protection System Simulation Tools 

This research focused on integrating cooperative, reputation-based trust to support 

the agent-based scheme used for transmission system protection in [64].  The research 

presented here built upon the original experiments that show compact trip zone coverage 

and simultaneously reduced fault clearing time as presented in that research.  The 

experiments covered here were run using the Electric Power and Communication  
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Table 2. Decision Matrix for Agent Behavior:  Trust Inclusive Agent-Based Protection 

Scheme Modified from [64] (original rules shaded, trust changes in italics) 

Rule 
No. 

Situation If… Then… Action 

1 

The relay 

sends a trip 
signal  

(to local CB 

indicating a 
zone 1 fault 

was detected) 

there are no corresponding zone 3 relay 

operations in the agent’s transmission 
region of concern from trusted agents 

and trusted agents exist 

the relay sent an 
incorrect trip signal 

Stop the breaker trip 

any of the trusted relays in the concerned 

region send a validated trip signal 

the relay sent a correct 

trip signal 

Monitor the breaker for 

operational failure – Adjust relay 
trust levels if necessary 

another situation occurs 
Situation is Uncertain 

1 
Continue to Rule 2 

2 Uncertain 1 

there is a fault in the zone 1 protection 

zone 

there was a correct 

relay trip 

Monitor the breaker for 
operational failure – Adjust relay 

trust levels if necessary 

there is not a fault in the zone 1 

protection zone 

there was an incorrect 

relay trip 

Prevent the breaker from 
tripping – Continue to monitor 

for fault conditions and adjust 

relay trust levels if necessary 

3 

The relay 
sends a trip 

signal  

(to local CB 
indicating a 

zone 3 fault 
was detected) 

at least one trusted agent indicates a zone 

1 relay trip in the concerned region 

the relay operated 
correctly, continue to 

trip if fault is not 

cleared in allotted time 

Monitor the breaker for 

operational failure – Adjust relay 
trust levels if necessary 

there was no zone 1 relay trips from 
trusted agents in the concerned region 

Situation is Uncertain 
2 

Continue to Rule 4 

4 Uncertain 2 

there is a fault in the zone 1 protection 
zone 

there was a local relay 
failure 

Trip the breaker and monitor the 

breaker for failures – Adjust 

relay trust levels if necessary 

there is a fault in the zone 3 protection 
zone 

there was a remote 
relay failure 

Trip the breaker and monitor the 

breaker for failures – Adjust 

relay trust levels if necessary 

there is not a fault in the zone 3 

protection zone 

there was an incorrect 

zone 3 relay operation 

Stop the breaker trip – Adjust 
relay trust levels if necessary 

5 

Operational 

failure of 
breaker is 

noted 

breaker fails to operate correctly in time 
allotted 

the breaker is 

malfunctioning and not 
providing local 

protection 

Send set equipment notification 

messages to the agents in the 

concerned region 

6 

A set 

equipment 

notification 
message is 

received when 

relay 
operations are 

in progress 

message is received from adjacent agent 

in same direction as indicated fault and 
trusted agents verified fault conditions  

remote breaker failure 

occurred in agent’s 
protection zone 

Trip the breaker and monitor the 

breaker for failures – Adjust 
relay trust levels if necessary 

message is received from adjacent agent 

in opposite direction as indicated fault 
and fault conditions are verified with 

trusted agents in that direction 

remote breaker failure 

occurred outside 

agent’s protection zone 

Trip the breaker and monitor the 

breaker for failures – Adjust 

relay trust levels if necessary 

message is received from a more distant / 

non-trusted agent or fault is not verified 

Situation is Uncertain 

3 
Continue to Rule 8 

7 

A set 

equipment 

notification 
message is 

received when 

no relay 
operations are 

in progress 

message is received from a trusted agent 

and fault conditions are verified with 

trusted agents in appropriate direction 

remote breaker failure 
occurred 

Trip the breaker and monitor the 

breaker for failures –  Adjust 

relay trust levels if necessary 

message is received from an agent who is 

not trusted 

Situation is Uncertain 

3 
Continue to Rule 8 

8 Uncertain 3 

fault conditions are identified/verified 
and any time delay to allow intermediate 

agents to clear the fault has passed 

possible remote relay 

and breaker failures 

Trip the breaker and monitor the 
breaker for failures – Adjust 

relay trust levels if necessary 

fault conditions are not 

identified/verified when time delay has 
expired 

there is no fault in the 

system, invalid 
message 

No control action is required – 

Adjust relay trust levels if 
necessary 
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Synchronizing Simulator (EPOCHS) to synchronize the Power System Computer Aided 

Design (PSCAD) power system simulator and the NS2 network simulator as seen in 

Figure 5. 

3.3.1  EPOCHS 

In order to model the complex relationships between the electric power infrastructure and 

communications networks, a simulation tool needs to combine information from different 

Figure 5. EPOCHS infrastructure:  Depicting interactions between the NS2 

communications simulator, the PSCAD/EMTDC power simulator and the 

EPOCHS agents.  The Runtime Infrastructure (RTI) is a central interface 

location allowing for time synchronization and message passing [23] 
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systems to create one complete picture of the scenario.  Researchers at Cornell University 

developed EPOCHS to link power system simulations to communications simulators.  

EPOCHS uses an agent-based framework to combine different simulations using their 

built-in interfaces enabling communications events to be involved in other power 

scenarios. 

Hopkinson wrote that ―EPOCHS was designed to link multiple simulations into a 

distributed environment (federation)‖ [23].  Combining simulators is becoming more 

popular as an approach to model complex interconnected systems.  While standardization 

efforts are underway to enable better information sharing between simulators, many 

simulations include COTS products for which no source code is available.  EPOCHS’ use 

of agents helps combine information from both simulation systems, providing integration 

designed so that the simulations advance at the same clock rate.   

This technique enables researches to use the best simulator for their needs without 

sacrificing quality for the sake of interoperability.  EPOCHS used an agent headquarters 

and a run-time infrastructure as shown in Figure 5 to synchronize and coordinate 

simulations that would otherwise run at different speeds.  In this simulation, the EPOCHS 

agent headquarters synchronized the PSCAD simulator with the NS2 communications 

simulator to allow agents to communicate with each other and interact with the power 

simulation.   Time steps were set at 0.002 seconds for this follow-on experimentation. 

3.3.2  PSCAD/EMTDC 

PSCAD (Power System Computer Aided Design) is a commercial tool used to 

generate graphical representations of power systems for simulation use.  In conjunction 
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with the EMTDC (Electromagnetic Transients including DC), electro-magnetic transients 

simulation engine, these programs allow for the analysis of power systems during system 

disturbances.  They also allow parameters to be varied to simulate control actions taken 

in response to environmental changes.  By providing the user with time domain 

instantaneous responses (also known as electromagnetic transients) through a graphical 

user interface, these systems allow for better analysis and understanding than previous 

text only simulators [34]. 

PSCAD/EMTDC was used to create the transmission network and display system 

measurements during the experiments.  Measurement data and status values were 

exported to be used by the agents providing system protection.  The simulations were 

kept in synch using EPOCHS and communications between agents took place using NS2.  

This communications simulator provided the agents with a way to exchange information 

before interacting with the power simulator again.  

3.3.3  NS2 

NS2 (Network Simulator 2) is used to simulate discrete events for network 

simulation.  Development began in 1995 with support from Lawrence Berkeley Labs, 

Xerox PARC, University of California at Berkeley, and University of Southern California 

[46].  Due to the public availability of the source code, NS2 is widely used in research for 

large scale communications simulations and protocol investigation.  Coding is based 

around C++ for processing performance combined with Tcl scripts for simulation control.  

This split programming adds flexibility and separates mechanism from policy when 

designing simulations [8].   
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The implementation used for the experiments combined NS2, the RTI, the 

AgentHQ and agents into a single executable.  The ability to create protocol stubs within 

NS2 allowed the RTI to interface between the different components in a synchronized 

manner [8].  A single executable for these components provided performance 

enhancements compared to running additional programs.  The simulation required 

corresponding networks for both the power system and communications infrastructure. 

3.4  Experimental Environment  

A simplified transmission line network was created in PSCAD consisting of two power 

sources, one at either end separated by three substations and connected together by four 

transmission lines as depicted in Figure 6.  Every transmission line is protected with two 

circuit breakers.  The breakers are located at either end of the line and each is controlled 

by a distance relay.  The distance between substations is depicted in that figure as well 

since it is not shown to scale. 

 

 

 

 

Figure 6. Simulated 400 kV power system used in the experiments:  Depicts a 

generation source at either end, four transmission lines, and eight circuit 

breakers (B1-B8), each protected by an IED relay (R1-R8) [23].  Transmission 

line lengths are provided since diagram is not to scale. 
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The original experiments in [64] were designed to protect a 400 kV high-voltage 

transmission system against a three-phase fault using distance protection methods.  In the 

simulations, request and response messages were sent approximately every 2 

milliseconds.  Communications between agents included measurements taken from 

current transformers, voltage transformers, and anti-aliasing filters.  Relay protection was 

provided by distance and time-delay relays using traditional settings.  The distance relays 

used the discrete Fourier transform (DFT) to obtain inputs.  Experiments were conducted 

based on two different situations.  The first situation involved incorrect operation of a 

zone 1 relay.  In the second scenario, circuit breakers were designed to fail in the closed 

position, failing to open when directed by their respective relay. 

3.4.1  Original Communications Setup 

In the work done by Wang, agents communicated at a very simplified level and 

no background traffic was simulated, eliminating effects caused by network congestion.  

Each substation bus resulted in a one millisecond propagation delay added to 

communications.  The messages between agents consisted of requests for system state 

(voltage, current, breaker status, etc.) at another agent location, requests for an agent to 

set a breaker at their location and any applicable replies to those requests.  Agents would 

then make use of that information to collaboratively clear a fault in as small a region as 

possible.  Agent communications were limited to a node’s immediate neighbors or 

immediate neighbors plus an additional agent protecting the adjacent line.   
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3.4.2  Revised Communications Setup 

The revised communications setup for these experiments included a more 

complete range of agents to help coordinate protective actions.  Communications were 

needed with all agents responsible for providing zone 1 protection of the primary line and 

each adjacent line segment.  This allows agents to verify fault conditions in zone 1 

segments, zone 3 segments and adjacent line segments that it was not responsible for 

protecting based on the interactions with those agents.  Agents observing a zone 3 relay 

signal would monitor the appropriate agents responsible for primary protection to verify 

that they attempted to trip their local breakers and the success or failure of that trip.  They 

could use this data to observe whether the agent was working correctly or not and 

determine if they needed to take action.  This action could be accomplished without 

waiting the traditional amount of time to see the effects of the stabilization attempt at 

their location. 

Additionally, when trust was lost with an agent responsible for primary 

protection, the set equipment request could be sent to the next agent in line available to 

take protective actions.  The receiving agent had the option to either trip immediately or 

first verify that the fault was not actually cleared before tripping the breaker at their 

location.  If the fault was cleared by the agent who was believed to be untrustworthy, the 

agent would be exonerated otherwise they would be classified as bad.  By increasing the 

number of set equipment message recipients, the trust system improved clearing time. 

This and the original research are stepping stones for improved relay 

communications that could be incorporated into larger SCADA protection schemes.  
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During the transition to a Smart Grid, data retrieved from monitors and passed between 

agents could also be used to update the central control facility.  These updates would 

provide the system operator with additional details necessary for improved situational 

awareness.  The intelligent agent protection scheme forms the cooperative environment 

upon which the remainder of this research is based. 

3.5  Experimental Situation and Issue Requiring Backup Protection 

These revised rules from Table 2 that guide agent actions must remain applicable 

when using trust in the normal non-malicious environment and should enable the system 

to match the performance achieved in the original experiments.  This research first 

attempted to replicate the performance of the original agent-protection scheme using 

scenarios based around Wang’s second case in [64].  In this simulation set up, a fault was 

triggered at the midpoint of the line protected by Breaker 5 and Breaker 6 as shown in 

Figure 7.  A fault at a location such as this should be caught by the primary zone 1 

protection provided by relays 5 and 6 as well as the zone 3 backup protection from relays 

3 and 8. 
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Figure 7. Experimental transmission grid showing fault location:  Fault depicted at the 

midpoint between breaker 5 (B5) and breaker 6 (B6). 
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In this case, the relay providing signals to breaker 5 notices that the breaker fails 

to open and sends a trip signal to relay 4 to clear the fault by cutting out the smallest 

amount of line.  Relay 4 attempts to trip breaker 4.  Unfortunately, this breaker fails to 

open as well and relay 4 sends a signal to relay 3 to open that breaker.  Breaker 3 receives 

the signal from relay 3 and operates correctly, clearing the fault in less time than 

traditional protection measures would.  During the original experimentation, the fault was 

cleared at 0.188 seconds with the agent system as opposed to 1.592 seconds with a 

traditional relay backup protection system. 

The other case that was considered in [64] involved a false trip signal detected at 

Breaker 5.  The agent based scheme used the information from cooperating agents to 

block this false trip signal and prevent the breaker from opening.  The improved trust 

scheme must be able to continue to act correctly to this issue when subjected to malicious 

behavior.  Since protection capability is dependent upon communications from partner 

agents, the robustness of the trust scheme must continue to protect from false breaker 

trips even when information update messages are not sent by a neighboring agent or if 

they receive false set equipment requests.  This feature was tested using two scenarios.  

In one, Agent 4 did not send any message traffic to Agent 5.  In the second, Agent 4 sent 

false set equipment requests to Agent 5. 

3.6  Experimental Scenarios Used in the Analysis 

Additional experimental scenarios mimicking potential real-world issues that 

might be experienced were created to test the cooperative trust scheme.  Eight new  
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Table 3. Experimental Scenarios:  Non-Optimal/Malicious Agent Communications 

Scenario # Situation depicted 

1 Baseline case – no malicious behavior 

2 Agent 5 will not send information response messages 

3 Agent 5 will not send set equipment messages 

4 Agent 5 will not send information response or set equipment messages 

5 Agent 5 sends false set equipment messages 

6 Agent 4 will not send information response messages 

7 Agent 4 will not send set equipment messages 

8 Agent 4 will not send information response or set equipment messages 

9 Agent 4 sends false set equipment messages 

 

scenarios were developed, intended to mimic conditions that might be experienced by a 

protective agent.  These studies are based around a situation where a three-phase fault 

occurs between breakers 5 and 6.  Both breakers 5 and 4 will fail to operate when they 

receive a trip signal, however this information is not known to the agents until fault 

clearing is attempted.  These scenarios are presented in Table 3.  

In this research, a look at the overall system behavior was warranted since some 

individual relays were designed to fail.  To review, for these scenarios correct behavior 

was defined as tripping the breaker only when an actual fault condition exists and only 

isolating the minimum area between working breakers.  The baseline scenario was added 

to depict the normal communications environment.  The other scenarios replicated effects 

from some type of malicious activity aimed at interrupting or adding message traffic 

between agents.  There was not rule in Table 1 that used a lack of communication on its 

own to classify an agent as bad.  This was primarily due to the lack of a trust redemption 

mechanism.   
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3.7  Experimental Parameters Varied for the Trust System 

Different trust implementations were developed by varying some of the 

parameters involved with either trust computation or actions taken when trust was 

lowered or lost.  The experimental trust-based implementations were tested initially 

varying four parameters from Table 4 using a full factorial design for each of the first five 

scenarios from Table 3.  This was done to verify assumptions regarding the dependency 

between trust system thresholds and percentage of network traffic lost.  Final 

experimentation was accomplished using all nine scenarios and reducing the number of 

parameters to two by holding the number of interactions tracked constant at 100 using the 

sliding window scheme and the trust system threshold constant at 0.75.  Agents were 

initialized with a trust rating equal to the trust system threshold for this implementation.  

The results were compared with the non-trust-based agent system’s performance in each 

of those nine scenarios. 

The number of interactions tracked was kept rather small to ensure that only the 

most recent information was used to compute trust.  Protection mechanisms need to be 

 

Table 4. Trust System Parameters Varied in Experiments 

Level 
# of Interactions 

Tracked 

Trust System 

Threshold Value 

(0-1) 

Add additional 

breaker to trip 

list 

Likelihood 

network traffic 

is lost 

Low 50 .95 
When below 

trust threshold 
1% 

High 100 .75 

When an agent 

is classified as 

bad 

10% 
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responsive to system failures that may be hidden for long periods of time [38].  The trust 

system threshold values were selected based on the likelihood that network traffic was 

lost.  Previous research suggested a range of values for lost UDP traffic in a 

communications network with typical minimum values of 1% or less and maximum 

values of less that 10% [4], [15], [21], [26], and [69].  These figures will differ depending 

upon the type of underlying communications network supporting the protection plan as 

described in [43] and [52].  Current work is under way to investigate protection for these 

communication lines [49] and improve the communications reliability to provide better 

system protection [66]. 

3.8  Methodology Synopsis 

To summarize, this research will use simulation to conduct experiments 

integrating a reputation-based trust system with a proposed backup protection system for 

power networks revolving around agent-based communications.  The simulations will use 

EPOCHS to synchronize the inputs and outputs from the PSCAD/EMTDC power system 

simulator with the NS2 communications network simulator as described in [64].  Trust 

will be built between agents cooperating to provide backup protection through regular 

status query and response messages.  Information obtained from the response messages 

will assist in behavioral analysis and enable the agent to build a more complete picture of 

system events.  The trust system used in this protection scheme is inspired by the 

distributed model for Project NICE [32] using a modified implementation to take 

advantage of the unique situation posed by its application to the power system.   
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The scenarios designed for the experiments demonstrate the ability of the 

proposed trust-based protection system to provide more correct decisions than the 

original agent-based protection implementation when presented with behavior mimicking 

malicious activity as well as during normal operating conditions.  The reputation-based 

trust system will also enable more timely protective actions to take place.  In turn the 

additional analysis and improved system information is effective in preventing the 

stability problems that contribute to cascades, further improving upon the traditional 

distance relay protective mechanisms. 
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IV.  Results and Analysis 

HIS chapter presents results from the experimental simulations and an analysis of 

the impact from incorporating cooperative trust into a backup protection scheme 

for power transmission networks.  First, results from the initial inclusion of a trust 

monitoring system will be covered.  Second, investigative questions regarding the 

importance of different system characteristics and dependence of some variables will be 

examined.  Third, results from each of the scenarios used in the simulation experiments 

will be presented.  Finally, an overall analysis of the results will be given in the last 

section in this chapter. 

4.1  Initial Trust Monitoring Scheme 

Results from the experiments were favorable.  The first set of experiments was 

conducted to replicate the original results of Wang’s research while adding the 

appropriate trust structure.  The trust values were computed and stored however no 

actions were taken using the trust computation results.  This experimentation was done 

solely to provide information that could be used as part of a centralized control 

monitoring system providing system operators additional situational awareness about 

device status, network communications, and agent behavior.  The results demonstrate that 

the system could perform at least as well as the original system while documenting 

behavioral abnormalities and providing additional status information.   

In these case studies, the fault at 0.3 seconds between agent 5 and agent 6 caused 

agent 5 and agent 6 to properly detect a fault and send a signal to open their respective 

T 
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Figure 8. Fault clearing of agent-based protection system with trust scheme:  Initial 

experiment results showing the agent-based protection system with integrated 

cooperative trust able to replicate the results achieved in [64].  Fault at 0.3 

seconds cleared at 0.488 seconds by agent 3 and recognized by agent 5 at 

0.506 seconds. 
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circuit breaker as a result of primary protection trip signals as seen in Figure 8a.  The 

agent at relay 5 providing backup protection notices that the breaker does not open when 

provided with a proper signal. Agent 5 sends a set equipment message to agent 4 as seen 

in Figure 8b.  Agent 4 notices its breaker does not open and it sends another set 

equipment message to agent 3 as shown in Figure 8c.  Agent 3 is finally able to clear the 

fault at approximately 0.488 seconds as shown from the current readings at relay 5 graph 

in Figure 8d. 

The results of this initial test appear identical to the results used by the system 

without a trust component, because the trust information was gathered, but not used in 

decision analysis.  Unfortunately, this method of trust implementation would not add any 

additional assistance to the agent’s decision making capability since it was not used 

locally.  To be of use in this type of system, this trust data would need to be collected by 

a central monitoring station and interpreted there.  The impact created would improve the 

situational awareness of the operator and could help network analysis.  Any action to 

remedy the situation would have to be taken from his remote location.  Further 

experiments showed that more timely decisions were made if agents used these metrics 

autonomously for corrective actions.  They also showed using these trust metrics resulted 

in a higher percentage of correct decisions when faced with malicious activity. 

4.2  Investigative Questions Answered 

Prior to developing the final trust implementation this research examined the 

parameters that were selected and analyzed their impact on the experimental scenarios.  

In the second set of experiments, parameters were varied as depicted in Table 4 for the 
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first five scenarios in Table 3.  The purpose of this round of experimentation was to 

verify the relative importance of each message type to the trust scheme.  By establishing 

a relationship between trust system settings and corresponding agent reactions, proper 

system settings were verified and experiments documented failures resulting from 

improper system setup.   

Results from these experiments showed that use of the trust system was effective 

in reducing fault clearing times when malicious activity was present in the system.  The 

original agent system typically reverted to traditional standby backup protection 

mechanisms (as used in non-agent based protection systems shown in Figure 9) when 

faced with a malicious situation that prevented authorized set equipment messages from  

 

Figure 9. Fault clearing of traditional transmission line backup protection:  Results from 

traditional transmission line backup protection system based off a time delay 

of 1.5 seconds as set in [64].  This is representative of the typical time it 

would take to clear a fault in most current implementations set on the order of 

1 second [24] and [59].  The agent system needed to provide better 

performance in both normal situations and during periods of malicious activity 

more closely approximating results achieved during normal activity and 

shown in Figure 8. 
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being sent.  When the original system was faced with situations where unauthorized set 

equipment messages were sent to agents, the lack of a mechanism to check the 

trustworthiness of the sender caused an immediate breaker trip without first observing or 

verifying fault indications. 

The modified agent-based protection system including the trust calculations was 

able to recognize an abnormal situation only when it caused a lack of trust.  If recognized, 

it could then react more quickly to the situation.  This established the first fundamental 

rule.  The system must be programmed to recognize and react to specific behaviors.  If a 

specific behavior or action was recognized as matching a condition described in Table 1, 

the agent was able to override the respective trust computation and distrust that agent 

completely.  A software based design allowed for the reprogramming of agents enabling 

their decision making abilities to be upgraded, assisting with adaptive protection 

capabilities. 

A second lesson learned dealt with properly setting threshold trust values used for 

agent classifications.  Original parameter settings causing situations where the actual trust 

rating was close to or below the trust threshold limit validated the assumption that 

additional information must be considered in certain circumstances such as monitoring to 

verify if an agent tripped or not.  Initial experiments simulating a 10% loss of message 

traffic and a trust threshold value of .95 required to classify an agent as good helped 

demonstrate the improper agent reactions.   

Although acting as programmed, an excessive number of agents were classified 

below the trust threshold.  Because they should have been trusted, extraneous set 
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equipment messages were sent into the system without proper reason.  Set equipment 

messages were originally limited to an agent’s immediate neighbors (one in each 

direction).  The new implementation included an option to send set equipment messages 

to the next logical agent in line as well, bypassing agents that did not meet the trust 

threshold.  These additional set equipment messages consumed communications 

bandwidth and forced agents to do more work, but improved protection.  This feature 

enabled the trust system to isolate the fault more rapidly and reliably while increasing the 

isolation area by the smallest amount.  However, without proper safeguards, these extra 

messages resulted in unnecessary circuit breaker trips that extending the recommended 

isolation zone.  When a message arrived from an agent that was more than one hop away, 

actions were delayed.  The more distant agent waited to verify the effect of any actions of 

the agent that did not meet the trust threshold to determine if an extended breaker 

opening was required. 

A third lesson was observed during this experimentation.  Normal information 

exchanges between agents established trust, but also verified remote agent actions.  In 

both systems, the set equipment messages were used to inform of a local protection 

problem.  However in the original system, the information from the response messages 

was only used to block a false local fault observation.  In the expanded trust system, 

information from remote agents was also used to verify fault conditions in multiple line 

segments to improve coordinated protection as well as for the trust calculations. 

When these response messages were lost, it directly affected the trust calculations 

and caused temporary periods where an agent acting in a trusted manner (and able to 
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clear faults) was incorrectly labeled with a low trust rating.  To fix this problem, instead 

of reacting solely on instantaneous information, the trust system was remodeled to 

incorporate recent power system state information from the last 0.01 second.  This 

accounted for a realistic degree of information loss in the system and improved data 

verification.  Additionally, set equipment messages were sent twice to increase the 

probability that they would reach their intended agent adding redundancy. 

Adding redundancy to communications networks in power control systems was 

recommended in [66] and [67].  Redundancy was added to the trust system fault 

verification modules ensuring that adjacent node status was not lost due to a temporary 

communication interruption or missed message using a sliding window to track signals 

and measurements from the past 0.01 seconds.  While communications redundancy is 

often thought of as creating multiple independent paths between nodes, the implemented 

method of resending and tracking recent information also created communications 

redundancy.  Agents validated local and remote power system settings more correctly 

after its incorporation better compensating for parameter simulating lost network traffic.  

It allowed for collaborating information that was obtained in different time slices while 

ensuring the relative timeliness of reactions to that information.  These changes added to 

the trust agent implementation prevented the isolation region from be expanded 

unnecessarily.   

These preliminary experiments also helped standardize trust system parameters 

used for the final set of experiments.  In the trust implementation, the trust threshold 

value was set accounting for at least twice the max expected value of a message being 
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lost.  Since the system relied on query and response messages, there were multiple 

opportunities for a complete trust transaction to be interrupted.  As a result in the final set 

of experiments, the trust threshold was established at .75, analytically accounting for the 

expected value of lost network traffic, expected propagation delay, and processing time 

associated with the agent communications.  This value limited the number of occasions 

when trust calculations accidentally fell below the threshold. 

Experimental results were similar when the number of tracked interactions was 

varied.  This was expected because the malicious scenarios evaluated in this research did 

not attempt to exploit this aspect of the trust scheme.  However in an actual 

implementation, the number of interactions tracked should be set according to the 

importance that minor fluctuations have on the system, the trust update mechanism 

selected, and the level of risk that an organization is willing to accept.  The fewer 

transactions tracked, the more rapidly temporary periods of communication interruption 

will be forgotten.  Trust will be lost and regained more quickly in this situation.  In the 

final experiments, tracked interactions were held constant at 100 resulting in a complete 

information refresh every 0.2 seconds as opposed to 0.1 seconds with 50 tracked 

interactions.  This value should be adjusted after identifying the risk to threats attempting 

to exploit reputation lag vulnerability [27].  More complex schemes that layer multiple 

trust ratings by tracking short and long time windows can help mitigate some of this risk. 

Additionally, it was noted that extending the list of agents to whom set equipment 

messages were sent only if an agent was classified as bad, was not as effective as an 

approach that relied also on the comparison of the calculated trust metric with the 
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threshold value.  Using solely the bad category limited the effectiveness of the system to 

only those situations that met a scripted preprogrammed behavior.  Loosening the 

restrictions and allowing the set messages to be sent to an extended set of recipients 

added robustness, but increased the computational cost at each extended recipient.  This 

new policy enabled bypassing agents who might be later classified as bad.  To prevent 

premature reactions to these messages, a time delay was added to prevent the more 

distant agent from opening a breaker without verifying that the fault was not cleared by 

the less trusted neighbor.  This delay was set at 0.05 seconds to account for the time 

required for that agent to open its breaker and stabilizing effects of clearing the fault to be 

noted in the voltage and current readings. 

Finally, signal verifications taking place between the interacting nodes enabled 

additional protection to be integrated into the system.  Agents were able to take action 

based on more immediate system feedback instead of waiting for timers to expire using 

traditional mechanisms.  They were able to directly compare readings and cross check 

these readings with set equipment requests.  This helped reduce the fault clearing time in 

certain situations improving system stability. 

4.3  Final Trust Scheme Results and Analysis 

In the final trust scheme that was created, the additional verification and 

redundancy integrated into the system resulted in a more successful trust system 

implementation providing additional protection in the face of malicious agents.  The trust  
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Table 5. Final set of parameters used for trust system experimentation and analysis 

Selected Trust Implementation 

# of 

Interactions 

Tracked 

Trust system 

threshold for 

good agents 

Likelihood 

network traffic is 

lost 

No Trust Scheme 
Not 

applicable 
Not applicable 

1% 

10% 

Add additional breaker to trip 

list when computed trust value is 

below trust threshold 

100 .75 
1% 

10% 

Add additional breaker to trip 

list only after an agent is 

classified as bad 

100 .75 
1% 

10% 

 

system made correct decisions in all nine scenarios with the improved backup protection 

mechanisms clearing faults in less than 1.0 seconds in all cases regardless of whether 

breakers were added to the set list if they were below the trust threshold or only if they 

were classified as bad.  This was a significant improvement over the original agent 

scheme with no trust integration.  Table 5 shows the breakdown of parameters for 

experiments that were run for each scenario. 

4.3.1  Sign Test for Median 

Due to the relatively small sample size (25 simulation runs were accomplished at 

each experimental setup) it was not reasonable to expect that the underlying distribution 

was normal.  First, nonparametric methods were used to compare the median values 

obtained from experimentation using both the Sign Test for Median and the Wilcoxon 

Signed-Rank Test (Appendix A contains more detailed analytic results using reduced 

median times of 0.3 and 0.5 seconds that are closer to settings associated with zone 2 
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protection [24]).  For each of these tests, the null hypothesis states that the median trip 

time is greater than or equal to 1.092 seconds accounting for a recommended time delay 

on the order of 1.0 second [24] and [59].  The alternative hypothesis is that the median is 

less than 1.092 seconds.  In each of the scenarios, exactly 0 of the cases was observed to -

be greater than or equal to 1.092 seconds.  The observed value of each of the test 

statistics Q+ is 0.  It is assumed that the Q+ is binomially distributed with p=1/2 [41].  In 

this case n=25 and the P value is 0.000 [37], [50], and [68].  With a P value this small 

(less than our alpha of .05), we reject the null hypothesis.  There is strong statistical 

evidence that the improved trust scheme is able to reduce the time required to clear the 

fault. 

4.3.2  Wilcoxon Signed Rank Test 

Additional statistical significance is provided using the Wilcoxon Signed-Rank 

Test since our experimental results are reasonably symmetric.  In this test, a value for W 

of 0 was calculated again.  When W = 0 with 25 samples, the P value for this test is less 

than .005 [41].  This is too small to have occurred by chance.  As a result, the null 

hypothesis can be rejected and it is statistically accurate to state that the improved agent-

based protection scheme integrated with cooperative, reputation-based trust metrics is 

able to clear faults more quickly than currently used traditional backup protection 

schemes.  In fact both sets of tests show that it is statistically correct to say the agent 

implementation can clear faults in less than 0.592 seconds and often less than the 0.392 

seconds more typical of a zone 2 relay when encountering the tested scenarios. 
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4.3.3  Significant Results Regarding Clearing Time and Correct Actions 

In six of the nine scenarios, the trust system improved results compared to the 

original agent-based system either by reducing clearing time (the original implementation 

reverted to traditional mechanisms in Scenarios 3, 4, 7, and 8) or by making improved 

decisions (not tripping solely based on receiving instructions to trip as in Scenarios 5 and 

9).  The most rapid clearing times were associated with the trust implementation that send 

additional set equipment messages if an agent dropped below the trust threshold at both 

1% and 10% traffic lost.  Had an additional rule been added to classify an agent as bad if 

their trust dropped below a lower threshold, the times might have been improved for the 

alternate scheme where additional agents were sent set equipment messages only if they 

were identified as bad.  This would have added to the complexity of the rule set and had 

the potential to classify agents as bad without any malicious activity having occurred. 

4.3.4  Results From Original Agent-Based Protection Scheme with No Trust 

The original agent scheme that did not incorporate a trust scheme was used as a 

reference point to compare the effectiveness of the different trust implementations versus 

what occurred when the original agent system faced these scenarios.  In the scenarios 

revolving around set equipment messages being lost (Scenarios 3, 4, 7, and 8), the non-

trust agent implementation reverted to traditional relay backup mechanisms as seen in 

Figure 10.  This resulted in the fault being cleared at the pre-established time delay set for 

the backup protection (1.5 seconds), reducing the benefits of a communicating agent 

system.  Additionally, because trusted relationships were assumed, there were incorrect  
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Figure 10. Fault clearing times using original scheme without trust mechanism:  

Comparison of fault clearing times (with a 99% confidence interval) between 

traditional backup protection and the original agent based scheme that did not 

incorporate a trust mechanism. 
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responses observed in Scenarios 5 and 9.  In these instances, as soon as an agent received 

a set equipment message from a neighbor, it attempted to trip its breaker immediately 

isolating regions of the power grid unnecessarily.  As a result, in 22.2% of the scenarios, 

there was an incorrect response and in 44.4% of the scenarios the system reverted to 

traditional backup protection resulting in non-optimal decisions being made in 66.7% of 

the situations. 

4.3.5  Results From Trust Implementation 1 (Agent Below Good Threshold) 

In contrast, the trust implementations that created an extended net of recipients for 

set equipment messages did not revert to the traditional backup protection mode and did 

not trip when extraneous trip signals were sent.  Specifically, the best implementation 

was the one that sent set equipment messages to the next agent in line if an agent that was 

supposed to receive a set equipment message fell below the established trust threshold for 

good classification.  The improved trust scheme was able to better identify fault location 

and clear the fault based on the expanded set of information that it was able to obtain and 

analyze.  By interacting with all agents responsible for protecting the specified segment 

of transmission line, an agent was more likely to verify any zone 1 or zone 3 fault signals 

that were observed.   

By verifying these signals, the agent was able to adapt to malicious behavior and 

reduce clearing time as shown in Figure 11.  Signal verification was used to cross 

reference readings from multiple locations and remote current measurements were used 

to prevent creating an isolation zone that was larger than required.  These verifications, 
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Figure 11. Fault clearing times:  set messages extended if below threshold.  Fault 

clearing times with a 99% confidence interval for agent implementation where 

set equipment messages are sent to an extended set of recipients if trust metric 

is below established threshold.  Scenario 1 – Normal communications through 

Scenario 9 – Agent 4 sends false set msgs are listed. 
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lengthened the overall time to clear the fault compared to normal communications 

situations but the tradeoff in ensuring that breakers did not trip unnecessarily was worth 

the delay.  

The difference in performance with the original system was obvious especially 

when comparing Scenarios 3, 4, 5, 7, 8, and 9.  The difference in performance with the 

second trust implementation where the set of agents receiving set equipment messages 

was only extended when an agent was classified as bad was less noticable.  During the 

worst case scenario when 10% of message traffic was lost the difference in performance 

was limited to being statistically significant only during Scenario 8.  Under more normal 

operating characteristics (1% of message traffic lost) however, the differences were 

noticable under both Scenarios 4 and 8.  This tradeoff requiring weighing additional 

verification and programming versus fault clearing time must be determined by the user 

selecting the implementation and the computing resources they have available. 

In Scenarios 2, 4, 6, and 8, trust levels were properly established at lower levels 

for the agent that was not responding properly to information queries.  In Scenarios 2 and 

6, that agent did send a set equipment message when it realized that it was broken 

enabling a response time more closely aligned with the time established in the baseline 

Scenario 1 where no malicious behavior occurred.  In Scenarios 3 and 7, the agent was 

trusted but refused to send set equipment messages.  The agents were able to compensate, 

but clearing time took longer than normal and longer than the time required when the 

respective agents were identified by lower trust metrics.  In Scenarios 5 and 9, the agents 

who knowingly tried to send improper set equipment messages were appropriately 
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labeled as malicious, the continued set equipment messages were ignored and actions 

were taken accordingly and appropriately when a valid fault signal was received.  Faults 

were cleared after the appropriate signals were verified as valid using multiple sources.  

In other situations where agents were identified as not acting in accords with proper 

behavior, the system had the option to label them as malicious when this behavior was 

noted, enabling better response actions in the future.  

4.3.6  Results From Trust Implementation 2 (Agent Classified as Bad) 

In the alternate trust implementation that reduced the occasions where set 

equipment messages were sent to an extended net of agent to those when conditions led 

to an agent’s classification as bad, results were similar to the previous trust 

implementation.  It outperformed the original agent-based scheme as well as traditional 

backup protection mechanisms as shown in Figure 12.  The only occasions when these 

extended set equipment messages were sent were during Scenarios 5 and 9.  As a result, 

the only real statistical difference between this implementation and the previous trust 

implementation that had fewer restrictions on extending the set equipment message list 

was found from experiments done with Scenarios 4 and 8 where trust was lost and the 

agent did not try to let others know that it experienced failure and needed protection help. 

4.3.7  Results for Alternate Cases Requiring Blocking a False Signal 

The second protection case involving Breaker 5 receiving a false signal to trip 

again produced favorable results for the reputation-based agent protection system.  When  
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Figure 12. Fault clearing times:  set messages extended if agent classified as bad.  Fault 

clearing times with a 99% confidence interval for agent implementation where 

set equipment messages are sent to an extended set of recipients if agent is 

classified as bad. Scenario 1 ―Normal communications‖ through Scenario 9 

―Agent 4 sends false set msgs‖ are listed. 
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experiments were run using either of the two trust implementations, the false trip signal 

was successfully blocked and power continued to flow.  This was a result of ensuring that 

agents who were not trusted did not delay protection efforts.  Waiting for untrusted agent 

information either caused too long of a delay or resulted in an incorrect decision being 

made.  The non-agent based detection scheme is not prepared for this situation and would 

trip a breaker as shown in Figure 13.  The original agent scheme that did not incorporate  

 

Figure 13. Original agent system trips breaker due to false signal.  Shows false trip signal 

sent to Breaker 5 at 0.20 seconds (a).  Relay 5 failed to block the false signal 

in graph (b) resulting in the breaker tripping and stopping the current flow 

seen in graph (c). 
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this trust component was unable to successfully react to the situations where information 

updates were not sent from a neighboring agent and when the neighboring agent sent 

false signals to trip the breaker.  In the situation where communications were interrupted, 

the breaker tripped as it would in the non-agent system [64] as shown in Figure 13.  In 

the other situation, the breaker tripped immediately after the agent received the false set 

equipment message because it did not verify the lack of a fault condition.  The reputation 

based cooperative trust scheme met the protection condition established in [64] by 

continuing to allow current to flow (as shown in Figure 14) under abnormal 

communications conditions and when subjected to malicious agent actions.   

  

 

Figure 14. Correct blocking of false trip signal with the trust system.  When a false trip 

signal was sent to Breaker 5 at 0.20 seconds, Agent 5 is rapidly able to block 

Breaker 5 from tripping using information from trusted agents to ensure the 

current continued to flow. 



 

75 

4.4  Summary 

As discussed in the Chapter II, cyber security measures and improved situational 

awareness are going to be essential as the grid undergoes modernization.  Malicious 

activity is on the rise and hackers have already demonstrated their ability to access the 

networks of companies around the world.  Because elements of critical infrastructure 

provide essential services, they become high-priority targets.   

The reputation-based trust mechanism proposed by this research has shown its 

effectiveness in reducing fault clearing times compared to traditional protection 

mechanisms.  These mechanisms need to be prepared to make correct decisions in the 

face of potential malicious activity.  By comparing fault clearing times, the agent-based 

backup protection systems incorporating the trust component are more effective at 

providing protection than systems without this component.  A summary graph comparing 

the results of all experiments performed is included as Figure 15 and Figure 16.  The 

experiments showed that trust implementations reduced clearing times below 0.5 seconds 

under each of the selected scenarios, well below the traditionally established settings of 1 

to 2 seconds [24] and [59].  These agent based systems even cleared faults more rapidly 

that the 0.3 seconds normally associated with zone 2 relays [24] under normal conditions 

and often even when subjected to malicious behavior. 

The suggested implementations should be combined with traditional network 

security measures and physical security efforts to provide proper defenses.  If improperly 

applied, this enhanced protection has the potential to disrupt time-critical protection   
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Figure 15. Fault clearing time summary at 1% message traffic loss.  For traditional relays 

fault clearing times were constant, set with a 1.5 second operating time.  The 

original agent-based scheme significantly reduced the clearing time but in 

certain cases reverted to traditional protection methods or operated 

incorrectly.  The improved agent-based schemes suggested in this research 

compensated for malicious behavior and cleared the fault in a shorter time 

period without extending the isolation zone at 1% message traffic loss. 
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Figure 16.  Fault clearing time summary at 10% message traffic loss.  For traditional 

relays fault clearing times were constant, set with a 1.5 second operating time.  

The original agent-based scheme significantly reduced the clearing time but in 

certain cases reverted to traditional protection methods or operated 

incorrectly.  The improved agent-based schemes suggested in this research 

compensated for malicious behavior and cleared the fault in a shorter time 

period without extending the isolation zone at 10% message traffic loss. 
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devices by adding delays where none previously existed.  While delays are better than 

interrupted or miscommunications in many instances, in the power grid they are 

unacceptable.  Adding behavioral-based analytic methods for trust metric calculation aids 

in ensuring information reliability and improves resulting system stability. 

 Layering an additional collaborative protection scheme as suggested by this 

research, increased the security of the entire control system.  This scheme can make use 

of existing computing and network resources to provide additional information necessary 

for making proper protection decisions and improving the situational awareness of 

control operators.  Agents used reputation information as a criterion for judging the 

trustworthiness of information received during data transactions and will have the ability 

to send this additional information to control centers for data analysis.  This analysis can 

monitor the protection system for signs indicating a faulty agent or possible larger system 

attack. 
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V.  Conclusions and Recommendations 

HIS thesis investigated the proposal that integrating reputation-based cooperative 

trust as an additional layer of security for backup protection systems would 

improve system performance and awareness.  The proposed scheme significantly reduced 

the amount of time required to clear faults when backup protection use was necessary and 

made a higher percentage of correct decisions compared to the original agent-based 

scheme that did not include a trust component.  As grid modernization continues and 

more intelligent devices are integrated into the SCADA control systems, incorporating 

reputation-based trust systems into these devices has the potential to be of great benefit in 

improving the reliability, stability, and security of this element of our critical 

infrastructure. 

This chapter will first summarize results obtained from the multiple experimental 

simulations and cover conclusions that can be drawn.  Next, it will emphasize why this 

research needed to be accomplished and how it will impact and change the power control 

community.  Finally, it will cover recommendations for future research topics in this area. 

5.1  Conclusions of Research 

Initial findings from the reputation-based trust integration with agent-based 

backup protection are very promising.  Even in its simplest implementation, the trust 

system has the ability to provide additional information to monitoring or control centers 

while adding little overhead and achieving identical performance to systems that did not 

implement trust.  The additional information captured provides valuable feedback for 

T 
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evaluating the state of the system and creating improved awareness of networks and 

component behavior. 

The potential for a more robust implementation is even greater and has been 

demonstrated using the specific scenarios discussed in this research.  When faced with 

malicious behavior that is not stopped with traditional network protection measures, the 

trust system will account for malicious activity determined by behavioral analysis.  The 

trust system enabled more rapid fault clearing (greater than a 50% improvement) without 

increasing the isolated grid area to help prevent outages from cascading.  Transmission 

line protection must account for malicious activity such as denial of service and rogue 

control commands in the future.  While a trust-based system will not protect from every 

type of attack, it has shown to be effective without adding a lot of communications 

overhead.  Layering trust mechanisms with other defensive elements will help architects 

design more complete grid protection. 

5.2  Significance of Research 

The incredible power afforded one who is able to affect relay or other switching 

device behavior results from the direct control that they possess on critical power 

delivery equipment.  These components are located at key junctures that have the 

potential to affect multitudes of people.  They are designed to break a chain of power 

failures and must act responsively and properly.  The additional trust layer is invaluable 

in limiting the effect an attacker has on this vital equipment.  

The Air Force, Department of Defense and other governmental agencies can 

benefit from this research that applied reputation-based trust in a unique cooperative 
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environment.  Power and other utility networks are increasingly the subject of attack [19], 

[20], [22], and [56].  Trust systems have the potential to thwart attempts to compromise 

these systems.  Threats to the power grid and other elements of critical infrastructure are 

likely to occur during times of war preparation such as the mobilization and deployment 

phases [44].  Interviews and writings in [16] and [31] describe how disruption to 

information systems and supporting infrastructure could cause delays and backlogs at key 

logistics locations.  Other research [63] focused specifically on attack strategies designed 

to introduce cascade style effects into the power grid.  Improving the reliability and 

security of the grid protection elements and the underlying communications networks 

will have a direct impact on the ability of the US armed forces to continue to deploy and 

rapidly project force where needed anywhere around the globe. 

The additional information tracked by the trust system is definitely of benefit in a 

layered security infrastructure.  Trust metrics provides insight about system behavior that 

was not previously captured.  As grid modernization progresses, the behavioral-based 

analysis that this type of system provides can be similarly implemented in other smart 

components that connect corporate and control information systems.  Regardless of how 

monitoring and control is accomplished in future SCADA systems, network designers 

take connectivity information into account and allow control operators to make adaptive 

adjustments from both environmental conditions and the trust metrics. 

5.3  Recommendations for Future Research 

A protection system implementing this additional measure of information 

reliability will realize additional benefits as widely distributed intelligent agents work 
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together to ensure system stability.  Research should continue to develop protection 

settings tailored for specific applications for further validation.  The trust-inclusive, 

agent-based backup protection system proposed here is a first step towards improving the 

robustness of agent-based protection and should be incorporated into future protection 

architectures. 

This research has the potential to be expanded in a number of directions.  In the 

future, the first logical step should focus on expanding the decision making capabilities to 

include scenarios where more than one agent may be malicious.  Additional information 

validation methods will need to be incorporated into the system.  The current 

implementation focused on cross-referencing power system data with locality data to 

clear the fault in a manner that affects the smallest area should be continued.  Creating 

more complex network topologies will help validate the system’s performance when 

faced with a more interconnected grid structure and ensure actions continue to limit the 

isolation area.  This system has the potential to be incorporated into the electrical grid on 

a wider basis.  Expanding the trust computations to include additional data validation as 

well as its implementation in more decision scenarios will help create a more robust 

scheme. 

Another step might be to investigate this or an alternate reputation-based trust 

scheme implemented in conjunction with a policy-based trust scheme such as 

cryptography.  When used together, the system could take advantage of additional layers 

of security.  If the coding is optimized, some of the other distributed aspects of the trust 

computations such as increased validation using shared trust cookies as discussed in [32] 
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could be integrated.  This combined scheme should improve protection without adding 

additional network traffic beyond what is required for the cryptographic system.  A 

digitally signed cryptographic token can then be incorporated allowing for distributed 

cookie storage or trust metric calculations.  The more robust implementation can permit 

additional trust inheritance and global trust value computations while improving message 

authentication and decreasing the potential for successful message spoofing. 

A final direction that future research could take would be to incorporate a 

reputation-based trust system such as this into other smart devices that will be 

increasingly used in the next generation grid.  Devices will have the potential to be used 

in demand reduction schemes and would allow end users to be directly wired into the 

central control scheme.  In these schemes it would be more desirable that a device 

respond appropriately when needed.  The time delays associated with cryptographic 

encoding have less of an impact on system protection since the real-time requirement is 

less stringent.  A trust-based scheme would have the potential to select the most 

trustworthy devices in these cases to ensure that proper actions could be directed in a 

timely manner to create the appropriate system effects. 

5.4  Summary 

Information and cyber security are becoming more essential our critical 

infrastructure network protection every day.  In a recent 60 Minutes interview, the former 

US Chief of National Intelligence reported, ―If I were an attacker… I probably would 

sack electric power on the U.S. East Coast, maybe the West Coast, and attempt to cause a 

cascading effect‖ [1].  Proper relay operation is critical to ensuring that this does not 
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occur.  Without better communications methods and protection schemes, malicious users 

would be able to create effects that could plunge entire regions into darkness and instigate 

chaos.  Traditional security mechanisms must be augmented by additional measures such 

as trust verification that provide adaptive protection capabilities for these components 

that provide an essential service to society. 
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Appendix A.  Experimentation Results By Scenario 

Table 6. Performance statistics for Scenario 1 – no malicious behavior.  Approximately 

equal performance for all implementations. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
0.188 0.20096 0.18808 0.18544 0.18808 0.18848 

Maximum (s) 0.188 0.292 0.19 0.19 0.19 0.19 

3
rd

 Quartile (s) 0.188 0.188 0.188 0.188 0.188 0.188 

Median (s) 0.188 0.188 0.188 0.188 0.188 0.188 

1
st
 Quartile (s) 0.188 0.188 0.188 0.188 0.188 0.188 

Minimum (s) 0.188 0.188 0.188 0.176 0.188 0.188 

Sample Std Dev 0.00000 0.03173 0.00040 0.00508 0.00040 0.00087 

n 25 25 25 25 25 25 

Std Error 0.00000 0.00635 0.00008 0.00102 0.00008 0.00017 

99.5% Error 0.00000 0.01775 0.00022 0.00284 0.00022 0.00049 

99% 

Confidence 

Interval Low (s) 

0.188 0.18321 0.18786 0.18260 0.18786 0.18799 

99% 

Confidence 

Interval High 

(s) 

0.188 0.21871 0.18830 0.18828 0.18830 0.18897 

# samples 

> 0.392s 
0 0 0 0 0 0 

Sign Test 

Median=0.392s 
0.0 0.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

# of samples 

> 0.592s 
0 0 0 0 0 0 

Sign Test for 

Median - 

0.592s 

0.0 0.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 7. Performance statistics for Scenario 2 – Agent 5 does not send response 

messages.  Approximately equal performance for all implementations. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
0.188 0.21904 0.176 0.17736 0.18808 0.18856 

Maximum (s) 0.188 0.408 0.176 0.188 0.19 0.19 

3
rd

 Quartile (s) 0.188 0.188 0.176 0.178 0.188 0.19 

Median (s) 0.188 0.188 0.176 0.176 0.188 0.188 

1
st
 Quartile (s) 0.188 0.188 0.176 0.176 0.188 0.188 

Minimum (s) 0.188 0.188 0.176 0.176 0.188 0.188 

Sample Std Dev 0.00000 0.06180 0.00000 0.00250 0.00040 0.00092 

n 25 25 25 25 25 25 

Std Error 0.00000 0.01236 0.00000 0.00050 0.00008 0.00018 

99.5% Error 0.00000 0.03457 0.00000 0.00140 0.00022 0.00051 

99% 

Confidence 

Interval Low (s) 

0.18800 0.18447 0.17600 0.17596 0.18786 0.18805 

99% 

Confidence 

Interval High 

(s) 

0.18800 0.25361 0.17600 0.17876 0.18830 0.18907 

# samples 

> 0.392s 
0 1 0 0 0 0 

Sign Test 

Median=0.392s 
0.0 0.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

0 

0.005 

1 

.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

# of samples 

> 0.592s 
0 0 0 0 0 0 

Sign Test for 

Median - 

0.592s 

0.0 0.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 8. Performance statistics for Scenario 3 – Agent 5 will not send set equipment 

messages.  Trust implementations outperform original agent implementation. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
1.592 1.592 0.3784 0.33856 0.3784 0.39176 

Maximum (s) 1.592 1.592 0.382 0.402 0.382 0.402 

3
rd

 Quartile (s) 1.592 1.592 0.378 0.396 0.378 0.396 

Median (s) 1.592 1.592 0.378 0.39 0.378 0.39 

1
st
 Quartile (s) 1.592 1.592 0.378 0.228 0.378 0.388 

Minimum (s) 1.592 1.592 0.378 0.226 0.378 0.382 

Sample Std Dev 0.00000 0.00000 0.00100 0.07693 0.00100 0.00601 

n 25 25 25 25 25 25 

Std Error 0.00000 0.00000 0.00020 0.01539 0.00020 0.00120 

99.5% Error 0.00000 0.00000 0.00056 0.04303 0.00056 0.00336 

99% 

Confidence 

Interval Low (s) 

1.59200 1.59200 0.37784 0.29553 0.37784 0.38840 

99% 

Confidence 

Interval High 

(s) 

1.59200 1.59200 0.37896 0.38159 0.37896 0.39512 

# samples 

> 0.392s 
25 25 0 10 0 12 

Sign Test 

Median=0.392s 
1.0 1.0 0.0 0.2122 0.0 0.5 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

91 

.025 - .05 

0 

0.005 

160 

unable to 

reject 

# of samples 

> 0.592s 
25 25 0 0 0 0 

Sign Test for 

Median - 

0.592s 

1.0 1.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 9. Performance statistics for Scenario 4 – Agent 5 will not send information 

response or set equipment messages.  Trust implementations outperform 

original agent implementation. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
1.592 1.592 0.22608 0.25304 0.38408 0.44888 

Maximum (s) 1.592 1.592 0.228 0.454 0.394 0.5 

3
rd

 Quartile (s) 1.592 1.592 0.226 0.228 0.386 0.456 

Median (s) 1.592 1.592 0.226 0.226 0.384 0.448 

1
st
 Quartile (s) 1.592 1.592 0.226 0.226 0.382 0.44 

Minimum (s) 1.592 1.592 0.226 0.226 0.378 0.414 

Sample Std Dev 0.00000 0.00000 0.00040 0.07253 0.00363 0.01776 

n 25 25 25 25 25 25 

Std Error 0.00000 0.00000 0.00008 0.01451 0.00073 0.00355 

99.5% Error 0.00000 0.00000 0.00022 0.04057 0.00203 0.00993 

99% 

Confidence 

Interval Low (s) 

1.59200 1.59200 0.22586 0.21247 0.38205 0.43895 

99% 

Confidence 

Interval High 

(s) 

1.59200 1.59200 0.22630 0.29361 0.38611 0.45881 

# samples 

> 0.392s 
25 25 0 3 1 25 

Sign Test 

Median=0.392s 
1.0 1.0 0.0 0.0001 0.0 1.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

6 

0.005 

1 

0.005 

325 

unable to 

reject 

# of samples 

> 0.592s 
25 25 0 0 0 0 

Sign Test for 

Median - 

0.592s 

1.0 1.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 10. Performance statistics for Scenario 5 – Agent 5 sends false set equipment 

messages.  Trust implementations outperform original agent implementation.  

Original implementation tripped without valid fault condition. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
n/a n/a 0.22608 0.22864 0.22608 0.23512 

Maximum (s) n/a n/a 0.228 0.284 0.228 0.39 

3
rd

 Quartile (s) n/a n/a 0.226 0.226 0.226 0.226 

Median (s) n/a n/a 0.226 0.226 0.226 0.226 

1
st
 Quartile (s) n/a n/a 0.226 0.226 0.226 0.226 

Minimum (s) n/a n/a 0.226 0.226 0.226 0.226 

Sample Std Dev n/a n/a 0.00040 0.01156 0.00040 0.03427 

n 25 25 25 25 25 25 

Std Error n/a n/a 0.00008 0.00231 0.00008 0.00685 

99.5% Error n/a n/a 0.00022 0.00647 0.00022 0.01917 

99% 

Confidence 

Interval Low (s) 

n/a n/a 0.22586 0.22217 0.22586 0.21595 

99% 

Confidence 

Interval High 

(s) 

n/a n/a 0.22630 0.23511 0.22630 0.25429 

# samples 

> 0.392s 
n/a n/a 0 0 0 0 

Sign Test 

Median=0.392s 
n/a n/a 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

n/a n/a 
0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

# of samples 

> 0.592s 
n/a n/a 0 0 0 0 

Sign Test for 

Median - 

0.592s 

n/a n/a 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

n/a n/a 
0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 11. Performance statistics for Scenario 6 – Agent 4 does not send response 

messages.  Approximately equal performance for all implementations. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
0.19216 0.21624 0.188 0.186 0.188 0.18872 

Maximum (s) 0.292 0.396 0.188 0.192 0.188 0.19 

3
rd

 Quartile (s) 0.188 0.246 0.188 0.19 0.188 0.19 

Median (s) 0.188 0.188 0.188 0.188 0.188 0.188 

1
st
 Quartile (s) 0.188 0.188 0.188 0.188 0.188 0.188 

Minimum (s) 0.188 0.188 0.188 0.176 0.188 0.188 

Sample Std Dev 0.02080 0.05074 0.00000 0.00548 0.00000 0.00098 

n 25 25 25 25 25 25 

Std Error 0.00416 0.01015 0.00000 0.00110 0.00000 0.00020 

99.5% Error 0.01164 0.02838 0.00000 0.00306 0.00000 0.00055 

99% 

Confidence 

Interval Low (s) 

0.18052 0.18786 0.18800 0.18294 0.18800 0.18817 

99% 

Confidence 

Interval High 

(s) 

0.20380 0.24462 0.18800 0.18906 0.18800 0.18927 

# samples 

> 0.392s 
0 1 0 0 0 0 

Sign Test 

Median=0.392s 
0.0 0.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

0 

0.005 

1 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

# of samples 

> 0.592s 
0 0 0 0 0 0 

Sign Test for 

Median - 

0.592s 

0.0 0.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592s 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 12. Performance statistics for Scenario 7 – Agent 4 does not send set equipment 

messages.  Trust implementations outperform original implementation. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
1.592 1.592 0.3784 0.342 0.3784 0.38992 

Maximum (s) 1.592 1.592 0.382 0.4 0.382 0.402 

3
rd

 Quartile (s) 1.592 1.592 0.378 0.394 0.378 0.394 

Median (s) 1.592 1.592 0.378 0.388 0.378 0.388 

1
st
 Quartile (s) 1.592 1.592 0.378 0.288 0.378 0.386 

Minimum (s) 1.592 1.592 0.378 0.226 0.378 0.378 

Sample Std Dev 0.00000 0.00000 0.00100 0.06811 0.00100 0.00593 

n 25 25 25 25 25 25 

Std Error 0.00000 0.00000 0.00020 0.01362 0.00020 0.00119 

99.5% Error 0.00000 0.00000 0.00056 0.03810 0.00056 0.00332 

99% 

Confidence 

Interval Low (s) 

1.59200 1.59200 0.37784 0.30390 0.37784 0.38660 

99% 

Confidence 

Interval High 

(s) 

1.59200 1.59200 0.37896 0.38010 0.37896 0.39324 

# samples 

> 0.392s 
25 25 0 9 0 9 

Sign Test 

Median=0.392s 
1.0 1.0 0.0 0.1148 0.0 0.1148 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

60.5 

0.005 

0 

0.005 

97 

.025 – 0.05 

# of samples 

> 0.592s 
25 25 0 0 0 0 

Sign Test for 

Median - 

0.592s 

1.0 1.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 13. Performance statistics for Scenario 8 – Agent 4 does not send response or set 

equipment messages.  Trust implementations outperform original 

implementation. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 1.592 1.592 0.238 0.2356 0.37848 0.39064 

Maximum (s) 1.592 1.592 0.238 0.24 0.38 0.408 

3
rd

 Quartile (s) 1.592 1.592 0.238 0.238 0.378 0.394 

Median (s) 1.592 1.592 0.238 0.238 0.378 0.39 

1
st
 Quartile (s) 1.592 1.592 0.238 0.238 0.378 0.386 

Minimum (s) 1.592 1.592 0.238 0.226 0.378 0.382 

Sample Std Dev 0.00000 0.00000 0.00000 0.00500 0.00087 0.00610 

n 25 25 25 25 25 25 

Std Error 0.00000 0.00000 0.00000 0.00100 0.00017 0.00122 

99.5% Error 0.00000 0.00000 0.00000 0.00280 0.00049 0.00341 

99% 

Confidence 

Interval Low (s) 1.59200 1.59200 0.23800 0.23280 0.37799 0.38723 

99% 

Confidence 

Interval High 

(s) 1.59200 1.59200 0.23800 0.23840 0.37897 0.39405 

# samples 

> 0.392s 25 25 0 0 0 11 

Sign Test 

Median=0.392s 
1.0 1.0 0.0 0.0 0.0 .345 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

0 

0.005 

0 

0.005 

112.5 

unable to 

reject 

# of samples 

> 0.592s 
25 25 0 0 0 0 

Sign Test for 

Median - 

0.592s 

1.0 1.0 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

325 

unable to 

reject 

325 

unable to 

reject 

0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Table 14. Performance statistics for Scenario 9 – Agent 4 sends false set equipment 

messages.  Trust implementations outperform original implementation.  

Original implementation trips breaker without valid fault conditions. 

 Trust schemes tracked 100 interactions and the trust threshold was set at .75. 

 Binomial distributions for Sign Test for Median from [37], [50], and [68]. 

 Statistical table information for Wilcoxon signed-rank test verified from [41].  

Interpret Wilcoxon Signed Rank Test results in chart as two items (rank score 

on top, p value on bottom). 

Implementation No trust scheme 
Add to set list if below trust 

threshold 
Add to set list only if bad 

% Traffic Lost 1 10 1 10 1 10 

Sample Mean 

(s) 
n/a n/a 0.238 0.23816 0.238 0.24072 

Maximum (s) n/a n/a 0.238 0.296 0.238 0.296 

3
rd

 Quartile (s) n/a n/a 0.238 0.238 0.238 0.238 

Median (s) n/a n/a 0.238 0.238 0.238 0.238 

1
st
 Quartile (s) n/a n/a 0.238 0.238 0.238 0.238 

Minimum (s) n/a n/a 0.238 0.226 0.238 0.238 

Sample Std Dev n/a n/a 0.00000 0.01299 0.00000 0.01155 

n 25 25 25 25 25 25 

Std Error n/a n/a 0.00000 0.00260 0.00000 0.00231 

99.5% Error n/a n/a 0.00000 0.00726 0.00000 0.00646 

99% 

Confidence 

Interval Low (s) 

n/a n/a 0.23800 0.23090 0.23800 0.23426 

99% 

Confidence 

Interval High 

(s) 

n/a n/a 0.23800 0.24542 0.23800 0.24718 

# samples 

> 0.392s 
n/a n/a 0 0 0 0 

Sign Test 

Median=0.392s 
n/a n/a 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.392s 

n/a n/a 
0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 

# of samples 

> 0.592s 
n/a n/a 0 0 0 0 

Sign Test for 

Median - 

0.592s 

n/a n/a 0.0 0.0 0.0 0.0 

Wilcoxon 

Signed Rank 

Test 

Median=0.592 

n/a n/a 
0 

0.005 

0 

0.005 

0 

0.005 

0 

0.005 
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Appendix B.  Performance Charts for Data by Scenario 

 

Figure 17. Fault clearing times for Scenario 1, no malicious behavior.  Approximately 

equal performance for all implementations under normal circumstances.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 18. Fault clearing times for Scenario 2, Agent 5 sends no response messages.  

Approximately equal performance for all agent implementations.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 19. Fault clearing times for Scenario 3, Agent 5 sends no set equipment messages.  

Trust system outperforms original agent implementation.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 20. Fault clearing times for Scenario 4, Agent 5 sends no response or set 

equipment messages.  Trust system outperforms original agent 

implementation.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 21. Fault clearing times for Scenario 5, Agent 5 sends false set equipment 

messages.  Trust system outperforms original agent implementation.  Original 

implementation tripped prior without actual fault.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 22. Fault clearing times for Scenario 6, Agent 4 sends no response messages.  

Approximately equal performance for all agent implementations.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 23. Fault clearing times for Scenario 7, Agent 4 sends no set equipment messages.  

Trust system outperforms original agent implementation.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 24. Fault clearing times for Scenario 8, Agent 4 sends no response or set 

equipment messages.  Trust system outperforms the original agent 

implementation.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Figure 25. Fault clearing times for Scenario 9, Agent 4 sends false set equipment 

messages.  Trust system outperforms original agent implementation.  Original 

implementation tripped without actual fault.   

 n/a – signifies original agent scheme with no trust component.   

 Trust schemes track 100 interactions and trust threshold set at 0.75. 
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Appendix C.  Agent Action and Trust Calculation Pseudocode 

Agent Interaction Pseudocode:  This pseudocode guides agent behavior between time 

synchronization events.  It covers the general events an agent might encounter and how it 

adjusts trust metrics for another agent.  

Require:  PSCAD simulator and agent server and clients to be synchronized in time 

Agent/PSCAD information update 

 Agent obtains local PSCAD power readings (Voltage and Current for 3 phases) 

 Agent obtains local fault detection results (zone 1 and zone 3 coverage zones) 

 Agent obtains local equipment status (breaker settings) 

Agent action period 

 Check local response messages as they arrive 

  Update trust metrics 

  Check for/verify faults in zone 1, zone 3 and in opposite direction 

 Trip breaker if fault exists in zone 3 and not cleared by primary agents 

 Process all stored messages 

  Respond to all information queries 

  Process all set equipment requests 

   If from 1-hop neighbor and fault is verified – trip breaker 

   If from 2-hop neighbor, fault is verified 

    If 1-hop neighbor did not clear fault – trip breaker 

  Ensure data from response messages updates local view of system 

 Send information queries to approprieate agents 

 Check/update trust values and cross reference information 

 If you observe zone 1 fault and verified 

  Send set equipment to neighbor sharing protection 

 Resend any necessary set equipment messages for redundancy 

 Verify success or failure of breaker trips 

 Block local trips if fault conditions not verified by any trusted agent 

Prepare for time resynchronization 

Trust Interaction Pseudocode:  This pseudocode guides trust structure development and 

demonstrates general trust computations 

Create a trust history used for quick lookup of trust metrics in the local storage implementation 

Create a trust store to track trust cookies for each node 

 Create a trust cookie for each node to track behavior 

Update trust cookie and history each time a query message is sent 

 Increment query and response queue counters and place correct value in the query queue 

Update trust cookie and history each time a response message is received 

 Place correct value in the response queue 

 Check contents of response vs observed conditions and override trust metric if necessary 

Update trust cookie and history each time a set equipment message is received 

 Check contents of set equipment message vs conditions and override trust metric if necessary 
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